
Eclipse as a Requirements Engineering Environment

Vincenzo Ambriola Luca Del Carlo Vincenzo Gervasi

Dipartimento di Informatica
Universit̀a di Pisa

via F. Buonarroti 2, I-56125 Pisa, Italy
{ambriola,delcarlo,gervasi}@di.unipi.it

Abstract

This paper introduces CPE, the CIRCE Plugin for
Eclipse. The CPE adds to the open-source development en-
vironment Eclipse the ability of writing and analysing soft-
ware requirements written in natural language. Models of
the software described by the requirements can be exam-
ined on-line during the requirements writing process. Ini-
tial UML models and skeleton Java code can be generated
from the requirements, and imported into Eclipse for further
editing and analysis.

1. Introduction

The Eclipse platform [5] has been proven on the field
to be general and scalable enough to handle most chores in
industry-grade software development. Although primarily
used for code development, Eclipse can be used, thanks to
its many plugins [4, 6], to create application designs, inter-
face with databases, design user interfaces, prepare and run
tests, manage the development process, and for many other
development-related activities.

It can be said that Eclipse has sucessfully consolidated
and integrated in a single, productive environment most
software development tasks, from early design to coding,
testing and deployment. However, the initial steps of the
software development process — those related torequire-
ments — are not yet taken care of. We believe that the
Eclipse platform can provide an extremely productive envi-
ronment for requirements engineering (RE) activities such
as:

• writing and managing requirements
• creating domain models
• visualizing models of the requirements
• validating the requirements for consistency and com-

pleteness

• generating initial design documents from the require-
ments

• generating skeleton code in Java from the require-
ments.

In the following, we describe how these and other func-
tionalities have been integrated into Eclipse by interfacing
it with the Requirements Engineering Environment CIRCE

(see [3, 7, 9] for details and further references), developed
at the University of Pisa. Section 2 introduces CIRCE, and
establishes basic nomenclature that is used in the rest of the
paper. Section 3 provides a short technical description of the
Circe Plugin for Eclipse (CPE), the plugin that lets Eclipse
access the features offered by CIRCE. Finally, Section 4
presents an example of how the CPE can be used in pro-
duction environment, with a particular emphasis on the pro-
ductivity gains that can be obtained. Some conlusions and
references complete the paper.

2. The Circe RE environment

CIRCE is an environment for the analysis of natural lan-
guage requirements. It is based on the concept of successive
transformations that are applied to the requirements, in or-
der to obtain concreteviews of models extracted from the
requirements. These include:

• models of therequirements document itself, consid-
ered as a textual artifact (for example: document struc-
ture or correlation between different requirements);

• models of thesoftware system described by the re-
quirements, and of the interactions with itsenviron-
ment (for example: data flow diagrams or UML se-
quence diagrams);

• models of therequirements development process (for
example: change traces or Function Points score evo-
lution in time).

<21, RECV, terminal, user, password>

<14, DEPC, @21, @10>

<7, TESTMODE, terminal, input>

...

...

...

...

<10, DFLOW, system, terminal>

<3,ER11,user,password>

Process diagram

for Terminal

Process diagram

for System

Dependencies

diagram

C ICO

NL requirements Parse trees

Tuple space

Abstract view Rendered view

modelers

projectors translators

User

CIRCE

a b

c

d e

Figure 1. A general overview of the transformations on NL req uirements operated by CIRCE.

The general architecture of CIRCE is shown in Figure 1.
The whole transformation process (from NL requirements
to concrete views of models) is divided into five steps, la-
beled©a -©e in the figure. The steps are briefly described in
the following:

©a First, the natural language text of the requirements is
parsed and transformed into a forest of parse trees.
These parse trees closely correspond to the original re-
quirements, but abstract away many surface features,
thus facilitating subsequent analysis.

©b The parse trees are then encoded as tuples and im-
mersed in a shared tuple space. This tuple space pro-
vides the extensional knowledge about the require-
ments, and serves as the basis for the next step.

©c An embedded expert system is then called upon to en-
rich the tuple space with more refined information.
The intensional knowledge about the basic structure
and behaviour of software systems is provided by mod-
ular components calledmodelers. CIRCE includes a
library of over one hundred modelers, covering such
diverse aspects as static, functional and behavioural
modeling, validation and metrication of such models,
document structure analysis, synthesis of user inter-
face components, etc.

©d When a specificview on the requirements is desired,
the needed information is extracted from the shared
tuple space by a second class of components called
projectors. This transformation produces an abstract
(e.g., graph-theoretic) description of the desired view,
starting from the extensional and intensional knowl-
edge collected from the previous steps. This abstract
view still exists only as an internal representation in
CIRCE, and needs to be made concrete and offered to
the user.

©e This is the purpose of the last transformation. The
abstract view is taken as input by other components
called translators, and actual rendering is performed,
thus producing a concrete view. Several different ren-
dering modes may be offered for the same abstract
view, to accommodate for different usage contexts. For
example, a graph can be rendered either with inter-
active placement of nodes and zooming, to facilitate
browsing, or as a static picture, for inclusion in paper
documents.

From a user perspective, CIRCE is a system that reads
natural language requirements as input, and — upon user’s
request — produces a vast number of views on different
aspects of the requirements. The user can use the insights
gained from the various views to correct, complete or per-
fect the original NL requirements. This induces a loop that
includes the human as a driving force for the requirements
development process, while offering him or her powerful
tools to analyze the requirements in great detail.

CIRCE has been implemented as a web-based system.
A central server acts as a repository for requirements doc-
uments. By using a standard web browser, users can edit
their requirements, and ask for specific views. For each re-
quest, CIRCE performs the transformations1 ©a -©e needed
to generate the requested view, and sends back the result
as a web page (possibly enriched with active content: for
example, by using Java applets for interactive graph brows-
ing). This approach has the obvious advantage that users
need no special software installed, and can work in a well-
know environment (their preferred web browser). However,
it also has some disadvantages:

• the quality of the interaction is rather low, being lim-
ited to basic text editing and web page browsing;

1Pervasive caching and differential parsing are used to improve perfor-
mance.

• deep integration with other tools relies on manual tech-
niques (copy&paste, download and import, etc.)

• users have to switch environment among different
phases of the development process, introducing un-
needed impedance in their workflows.

In the past we have used for teaching purposes CIRCE

(for requirements analysis), IBM Rational Rose (for UML
design), and IBM VisualAge for Java (for coding). Our ex-
perience is that these changes of environment have had an
adverse impact on the productivity of the students.

By integrating CIRCE with Eclipse we obtain three main
advantages: (i) a more powerful and comfortable environ-
ment for requirements writing and analysis, (ii) a smoother
transition into design and coding, and (iii) the possibility
of including requirements into any round-trip engineering
needed during the development.

The integration is realized under the form of a new plu-
gin for Eclipse, the Circe Plugin for Eclipse or CPE. This is
the subject of the next section.

3. How the CPE works

From a user point of view, the CPE contributes sev-
eral requirements-related items to the standard palette of
Eclipse:

1. A new file type (extension.circe), for requirements
resources. Actual documents are stored on the CIRCE

server; local resources of this type store all the infor-
mation needed for connecting to a given server.

2. A “New Requirements Document” wizard, to assist the
user in the creation of a new requirements resource
(see Figure 2).

3. A text editor for requirements document, provid-
ing three pages for Designations (defining domain-
specific vocabulary), Definitions (defining domain-
specific language constructs), and Requirements (de-
scribing the software system to be built) — see Sec-
tion 4 for an example.

4. A menu, hierarchically listing the models, metrics, and
validation views that CIRCE can generate. Once a
view is requested, an in-memory resource is created
with the view obtained by the CIRCE server, and the
system-defined editor for HTML resources is invoked
to present the view to the user.

5. A contributor to the “Problems” view, signalling to the
user any violation of validity properties that CIRCE has
found in the requirements.

Figure 2. The “Create new requirements doc-
ument” wizard.

Technically, the CPE is implemented as an Eclipse plug-
in, consisting mainly of (i) a new multipage editor, config-
ured with custom syntax colouring, hover help and anno-
tations; (ii) an editor contributor, dinamically updatingthe
menu of available CIRCE views; (iii) a wizard to generate
new.circe files; (iv) a background thread, periodically
querying the CIRCE server for quality audits of the cur-
rent requirements and displaying them in the “Problems”
view; (v) import facilities, also accessible from the menu,
to store CIRCE-generated UML models (as XMI files) and
Java code into the local repository.

The CPE interacts closely with the CIRCE server through
an HTTP-based custom protocol. To reduce network
traffic, the CPE implements caching and pre-buffering
wherever applicable. In particular, the CPE provides a
buffered, network-basedIFileProvider implementa-
tion that connects to the CIRCE server for loading and sav-
ing documents.

4. Writing requirements in Eclipse

Due to space considerations, we cannot present here a
complete example of how the requirements for a real system
are written in Eclipse. However, we can highlight some of
the most relevant steps in the process. Examples will be
taken from the Steam Boiler reference problem [1].

The first task consists in creating a new requirements
document (i.e., a.circe resource) in a given project. This
can be accomplished by invoking the “New Requirements
Document” wizard (in Figure 2)2.

Immediately after the creation, an editor is opened on
the new document. The editor offers three pages, respec-

2A valid login and password for the user must be established before-
hand on the CIRCE server

tively for editing designations, definitions, and require-
ments. Designations establish a domain dictionary, declare
properties of the entities denoted by the various terms, and
declare synonyms for the terms. For example, the declara-
tion steam boiler/ENTITY/IN/OUT in Figure 5 in-
dicates that “steam boiler” is a significant term in our do-
main, denoting anentity that can performinput andoutput
w.r.t. its environment.

Definitions are used to extend the linguistic abilities of
CIRCE. In most projects they are never used at all, for
the basic language that can be recognized without defini-
tions is normally sufficient for many systems. In the case
of the steam boiler, we could state that “activating” some
hardware component really means sending a start com-
mand to the component. This would be obtained by writ-
ing the definitionACTIVATE x/IN → send start
command to $x, that establishes the meaning of “acti-
vatingx” (provided thatx is something that can accept com-
mands) throughout the current requirements specification.

Finally, requirements describe, in natural language3, how
the software system to be built works and interacts with its
environment. In this page both statements describing the
environment (e.g., “The steam boiler is equipped with an
evacuation valve”) and those describing the actual work-
ing of the system (e.g., “Every 5 seconds, the controller
reads the throughput of each working pump”) can be en-
tered. The editor assists the user in writing the requirements
by highlighting words that are neither in CIRCE’s basic dic-
tionaries nor in the designations, as shown in Figure 3. A
simple Content Assist option for enriching the designations
with the new terms is also provided. Hover help is used
to remind the user of the properties of a term occurring
in the requirements. Deeper syntactic problems are iden-
tified asynchronously, by sending the text to the server ev-
ery few seconds (behind the scenes) and using the results
of the parsing performed by CIRCE to further annotate the
document. Finally, those problems with the semantics of
the requirements that can be detected by the expert system
(step©c from Section 2) are identified when the document is
saved, and used to populate both the document’s annotation
model and the “Problems” view of Eclipse. For each iden-
tified problem, all relevant details and suggestions on how
the problem can be solved are presented to the user upon
request (see, for example, Figure 4); moreover, for certain
classes of problems a “QuickFix” — i.e., a wizard that auto-
matically alters the requirements document to make it con-
sistent — is provided, so that the most common solutions to
typical problems are readily applicable.

Beside the lexical and syntactic support offered by the
editor, and the validation checks shown through the “Prob-
lems” view, the user can apply the modeling facilities of
CIRCE while working in Eclipse. For example, Figure 5

3English and Italian are currently supported.

Figure 4. Details about one of the prob-
lems identified by CIRCE on the requirements
shown in Figure 3.

shows, in the bottom right corner, a diagram of the com-
munications path needed by the steam boiler, synthesized
by CIRCE from the NL requirements given. A number of
modeling views are offered, both on the requirements docu-
ment (e.g., lexical homogeneity of the structure of the doc-
ument) and, more importantly, on the system described by
the requirements (including functional, static and dynamic
behaviour). The interested reader can refer to [3] for details.

The capability of looking at a development artifact from
different point of views can be invaluable, as witnessed by
the fact that Eclipse natively offers multiple views, typically
on source code. The CPE brings the same ability to require-
ments, offering over one hundred views wich the user can
peruse at will during the development.

Also, at any stage of development the user can inspect
or generate UML models [2] (to be imported into appro-
priate plugins of Eclipse like Omondo [12]), Abstract State
Machines specifications [8], or skeleton Java code (to be
imported into the Java Development Tools environment of
Eclipse). For a restricted class of systems, the generated
Java code provides a directly executable prototype for the
system.

5. Conclusions

By interfacing Eclipse with CIRCE, the CPE adds pow-
erful requirements analysis capabilities to Eclipse, while at
the same time adding an extensible, comfortable, integrated
development environment to CIRCE.

We believe that by consolidating under a single umbrella
requirements writing and analysis, system design, and cod-

Figure 3. Editing of a requirements document. In the “Proble ms” view below the main editor, the list
of problems identified in the current requirements.

Figure 5. Eclipse showing the communication diagram genera ted by CIRCE from the NL requirements.

ing, great productivity gains can be obtained during the de-
velopment process.

There are many aspects that have not been touched by
this work. Among others, the issues of how requirements
aremanaged, and how collaborative work on the require-
ments can be supported. Other projects being pursued by
the Eclipse community have close ties with these issues:
for example, collaborative work is the subject of the Koi
subproject [11], while generation of Java code could be
integrated in the Generative Model Transformer subpro-
ject [10]. We intend to investigate these issues as part of
our future work in this area.

Acknowledgments. The authors wish to acknowledge the finan-
cial support of IBM through its IBM Eclipse Innovation Award
programme. The authors would also like to thank IBM for its many
contributions to the Open Source community at large.

References

[1] J.-R. Abrial, E. B̈orger, and H. Langmaack.Formal Meth-
ods for Industrial Applications: Specifying and Program-
ming the Steam Boiler Control. Number 1165 in Lecture
Notes in Computer Science. Springer-Verlag, Oct. 1996.

[2] V. Ambriola and V. Gervasi. On the parallel refinement of
NL requirements and UML diagrams. InProc. of the ETAPS
2001 Workshop on Trasformations in UML, Genova, Italy,
April 2001.

[3] V. Ambriola and V. Gervasi. The Circe approach to the sys-
tematic analysis of NL requirements. Technical Report TR-
03-05, University of Pisa, Dipartimento di Informatica, Mar.
2003.

[4] K. Beck and E. Gamma.Contributing to Eclipse. (to be
published).

[5] Eclipse.org home page. http://www.eclipse.org/.
[6] Eclipse plugins categorized list (eclipse-plugins.info).

http://www.eclipse-plugins.info/eclipse/index.jsp.
[7] V. Gervasi. Environment Support for Requirements Writing

and Analysis. PhD thesis, University of Pisa, March 2000.
[8] V. Gervasi. Synthesizing ASMs from natural language re-

quirements. InProc. of the 8th EUROCAST Workshop on
Abstract State Machines, pages 212–215, February 2001.

[9] V. Gervasi and B. Nuseibeh. Lightweight validation of nat-
ural language requirements.Software: Practice & Experi-
ence, 32(2):113–133, Feb. 2002.

[10] Gmt home page. http://www.eclipse.org/gmt/.
[11] Koi home page. http://www.eclipse.org/koi/.
[12] Omondo home page. http://www.omondo.com/.

