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Abstract

We propose a structured mathematical definition of the semanticg pfdgrams to provide a
platform-independent interpreter view of the language for thgpf@grammer, which can also be
used for a precise analysis of the ECMA standard of the language and as a reference model for
teaching. The definition takes care to reflect directly and faithfully—as much as possible without
becoming inconsistent or incomplete—the descriptions in thet@ndard to become comparable
with the corresponding models for Java in Stérk et al. (Java and Java Virtual Machine—Definition,
Verification, Validation, Springer, Berlin, 2001) and to provide for implementors the possibility to
check their basic design decisions against an accurate high-level model. The model sheds light on
some of the dark corners oft@nd on some critical differences between the ECMA standard and the
implementations of the language.
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1. Introduction

Inthis paper the method developedi36] for a rigorous definition and analysis of Java and
its implementation on the Java Virtual Machine (JVM) is applied to formalize the semantics
of the entire language ICWe provide a succinct, purely mathematical (thus platform-
independent) model, which reflects as much as possible the intuitions and design decisions
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underlying the language as described in the ECMA stanfatdand in[25] and can be
used as accurate and complete reference modet bydgrammers, by implementors of the
language and by students learning it. In Sec8ere point to some challenging applications
of the model for proving interesting theorems abofita@d its implementations.

The model clarifies a certain number of semantically relevant issues which are not handled
by the ECMA standard, wherefore we also consulted the Microsoft Press [8)8Rs31]
and the documentation |28,29,34,37,39]A series of bugs and gaps in the ECMA standard
for Cff and in its implementation in .NET and incoherences between the two were detected
during our attempt to build for the language a consistent and complete yet alystiaod
model(in the sense described [8]). Some of them are mentioned in this paper to shed
light on some dark corners offCfor a complete discussion we refer the reader to the
companion papdR0]. As a rule we adhere to an established scientific tradition for which
one of the goals of defining the meaning of programs is to accurately specify the freedom
the compiler writer has for the implementation. Nevertheless, we also want our model to
support the practice of programming. Therefore, whenever we see for a language construct
an incoherence or ato-be-closed gap between on the one side the view offered by the ECMA
standard, which should support the understanding also by programmers, and on the other
side the view current compilers seem to have, we give in our model a pragmatic preference
to abstractly defining what the programmer is allowed to expect from the execution of his
code in the current implementations of {29,34,39] In each case we explicitly discuss
the discovered discrepancy so that the parameters of the design decision become clear. To
support the experimentation with the model a project has been started to refine the model
developed here to .NET-executable AsmL c@i#, similarly to the AsmGofer refinement
developed by Schmif82,33]for the Java and JVM models [B6].

To provide the programmer with a transparent view of the intricate interaction of various
language features which depend on the run-time environment, our model comes as an
abstract interpreterwhich provides a simple way to reflect those run-time-related features
encountered upon executing a givehgogram. To exploit the flexibility the use of Abstract
State Machines (ASMs) offers in high-level system modeling and to obtain the faithfulness
and simplicity of abstract models the ASM method allows one to achieve, the interpreter
takes the form of an ASM. This allows us in particular to specify the static and the dynamic
parts of the semantics separately, due to the ASM classification of abstract states into a static
and a dynamic part. Thdynamic semanticsf the language is captured operationally by
ASM rules which describe the run-time effect of program execution on the abstract state of
the program, thetatic semanticeomes as a mainly declarative description of the relevant
syntactical and compile-time checked language features (like typing rules, rules for definite
assignment and reachability, name resolution, method resolution for overloaded methods,
etc.) and of pre-processing directives (likdefine , #undef , #if | #else , #endif
etc.), which are mostly reflected in the attributed abstract syntax tree our model starts from.

To keep the size of the models small and to facilitate the understanding of clusters of
language constructs in terms of local state transformations, similarly to the decomposition

1 See Sectio for more information on our choice of ASMs among the many frameworks in the literature to
deal with language semantics.
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of Java and the JVM i[86] we structure the {Cprogramming language intayered modules

of orthogonal language featuresamely

o the imperative core, related to sequential control by while programs, built from statements
and expressions over the simple types of C

e classes, realizing procedural abstraction with global (module) variables and class initial-
ization,

e object-orientation with class instances, instance methods, inheritance,

e exception handling,

o delegates together with events (including here for convenience also properties, indexers,
attributes),

e concurrency (threads),

e so-called unsafe code with pointers and pointer arithmetic.

This yields a sequence of sublanguages,GCtc, Cip, Cig, Cip, Ciy, Ciy which

altogether describe the entire language Each languagé in the sequence extends its

predecessor and for each one we build a submachiae EHARP, which is a conservative

(purely incremental) extension of its predecessor. The modetESHARP for the entire

language @ is a composition of all submachines.

EXECCSHARP =
EXECCSHARP,
EXECCSHARP-
EXECCSHARP)
EXECCSHARPE
EXECCSHARPy
EXECCSHARPp
EXECCSHARPy

This approach supports a systematic piecemeal introduction of the numerous language
constructs in teachingfQor similar programming languages).

To keep the definition of the models succinct, we avoid tedious and routine repetitions
concerning language constructs which can be reduced in well-known ways to the core
constructs in our models. Whenever instead of a direct formalization of a construct we
use a syntactical translation to constructs dealt with in the core model, we have to justify
that the translation is correct with respect to the semantics of the construct as intended
by the standard. The ASM model we define provides a basis to rigorously formulate and
mathematically prove the intended equivaledc8ince such a justification follows well-
known patterns, it is skipped in this paper, but to remind the reader of the problem we
usually mention it.

The handling of truly concurrent threads, not limited to interleaving or similar simple
scheduling techniques, is closely related to the underlying memory model. Since the de-
scription of this memory model goes much beyond this paper, the submogeh@ its
further analysis is postponed to a separate pggigr

20ne has to define an extension of the core model by a direct formalization of the construct in question and
then to prove that this model is equivalent to the core model modulo the syntactical translation of the construct.
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By and large one can correctly understand an ASM as pseudo-code operating over abstract
data (structures in the sense of logic). Therefore we skip a detailed definition of ASMs,
which is available in textbook form in Chapter 2 of the AsmBd&g]. Since our paper
is not a tutorial or manual onfCwe restrict our explanations of language constructs to
features a reader will appreciate who is already knowledgeable about the basic concepts of
object-oriented programming. In a technical red@g] also the remaining details which
are skipped in this paper are spelt out completely, together with further explanations and
examples.

The paper is structured by the modularization we propose for the language description.
The basic framework of our model is introduced in Secfidngether with the interpreter
for the imperative kernel & of the language. Successively one more section is added for
each model refinement to capture the related language extension. In general, each section
has a first part where the static assumptions of the model are formulated, followed by a
second part which contains the dynamics expressed by the ASM transition rules operating
on the corresponding state components. In general, at each layer the interpreter consists of
two submachines, one defining expression evaluation and one defining statement execution.

2. The imperative core Ciz

In this section we define the model foi€; which defines the basic machinery of the
ASM model for Q1. It describes the semantics of the sequential imperative corg witg
to be executed statements (appearing in method bodies) and to be evaluated expressions
(appearing in statements) built using predefined operators over simple types. The compu-
tations of this interpreter are supposed to start with an arbitrary but fizgdgram. We
separate syntax and compile-time matters from run-time issues by assuming that the pro-
gram is given as an attributed syntax tree (i.e. annotated abstract syntax tree resulting from
parsing and elaboration), trying to achieve model simplicity also by assuming some useful
syntactical simplifications which will be mentioned as we build the model. Before defining
the transition rules for the dynamic semantics af-Cwe formulate what has to be said
about the static semantics.

2.1. Static semantics @l

We view the grammar in FidL, which defines expressions and statements of the sublan-
guage @7, as defining also the corresponding ASM dom&rpandStm To avoid lengthy
repetitions we include here already the distinctions between checked and unchecked ex-
pressions and blocks, though they are semantically irrelevant in the subnigdeh@start
to play a role only with @¢. The seMexpof variable expressions (lvalues) consists in this
model of the local variables only and will be refined bel®expdenotes the set of statement
expressions than can be used either as (result yielding) expressions or as (result discarding)
statements, such as an assignment to a variable expression=xigingh assignment op-
erator from the seflopor ‘++' or ‘-- . Lit denotes the set of literals, similarly fdype
Laband the se€expof constant expressions whose value is known at compile time. When
referring to the set of sequences of elements from dtestwe write Items e.g. Sexps
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Exp == Lit| Vexp | Uop Exp | Exp Bop Exp | Exp ‘?” Exp ‘2’ Exp
| ( Type )’ ExpSexp | ‘C Exp ‘)’ | ‘checked’ ‘(" Exp ‘)’
| ‘unchecked’ ‘(" Eap ‘)’

Vexp ::= Loc

Sexp = Vexp ‘=" Exp | Vexp Aop Exp | Veap ‘++' | Vexp ‘-='

Uop =+ |0 |

Bop u= |/ W ]SS ST ks | = | ==
BRI

Aop == /=7 | = | 4= | == | k=T | =T =T | = | 4

Stm 7| Sexp ;7| ‘break’ ‘;’ | ‘continue’ ‘;’ | ‘goto’ Lab ‘;’

| ‘if” “C Exp )’ Stm ‘else’ Stm

| ‘while’ ‘(" Exp )’ Stm| ‘do’ Stm ‘while’ ‘(’ Exp )’

| ‘for’ ‘C [Seaps| ;" [Exp] ‘57 [Seaps| ) Stm

| ‘switch’ ‘¢ Exp ) “{’ {Case { Case} Bstm {Bstm}} ‘¥’
| ‘goto’ ‘case’ Cexp ;" | ‘goto’ ‘default’ ;’

| ‘checked’ Block | ‘unchecked’ Block | Block

Sexps = Sexp {*,” Sexp}

Case ::= ‘case’ Cexp ‘:’ | ‘default’ ‘:’
Block := {’ {Bstm} ‘¥’
Bstm ::= Type Loc ;" | ‘const’ Type Loc ‘=" Cexp *;’ | Lab ‘:” Stm | Stm

Fig. 1. Grammar of expressions and statementsiin.C

double

decimal

Fig. 2. The simple types of 5.

for the set of sequences of statement expressions. We usually write lower caselgtters
denote elements of a Séfe.g.lit for elements ot.it.

The descriptions of implicit numeric conversions[#v, Section 13.1and of binary
numeric promotions if27, Section 14.2.6¢an be succinctly formulated as follows, using
the type graph in Fig2 for the simple types of & which are the types of {5 (for a
classification of the types offsee Fig4).



6 E. Borger et al. / Theoretical Computer Sciemg(1111) ii—iii

Definition 1 (Implicit conversiori27, Section 13.1} We say that there exists amplicit
numeric conversiofrom typeA to B (written A < B) iff there exists a finite, non-empty
path of arrows fronAto B in the type graph in Fig2. We writeA<B for A < B or A = B.
A type C is called anupper boundof A andB iff A<C and B<C. A type C is theleast
upper boundf A andB iff

e Cis an upper bound oA andB and

e C<D for each upper bound of A andB.

We write sugA, B) for the least upper bound éfandB if it exists.

We assume all the type constraints (on the operand and result values) and precedence
conventions listed if27] for the predefined (arithmetical, relational, bit and boolean logical)
operators and the expression types. As usual each expressicexpatthe attributed syntax
tree has as attribute its compile-time tytype(exp).

About type conversions at compile-time we assume that type casts are inserted in the
syntax tree if necessary. For example, if a binary numeric opebbaiwis applied to argu-
ments iney bop e2, then the least upper boufdof the types ok1 andes must exist and
the expression is transformed int@) e1 bop ( T) e2.

Definition 2 (Binary numeric promotioffi27, Section 14.2.§] The binary numeric pro-
motion consists of applying the following rules:
e If the least upper bound & andB exists, then
o ifsup(A, B)<int ,thenAandB are converted tont ,
o otherwiseA andB are converted to syg, B).
o If the least upper bound @& andB does not exist, then a compile-time error occurs.

We also assume the syntactical constraints for statements li&d jie.g. the following
ones for blocks (where theezope of a local variabl@docal constan}is defined as the block
in which it is declared, thecope of a labels the block in which the label is declared,
and a local variable is identified by its naraed the position of its declaration, so that in
particular local variables with the same name in disjoint blocks are considered as different):
e It is not allowed to refer to a local variable (local constant) in a textual position that
precedes its declaration.
It is not allowed to declare another local variable or local constant with the same name
in the scope of a local variable (local constant).
e Itis not allowed for two labels with the same name to have overlapping scopes.
e A goto Labmust be in the scope of a label with naires.
e Expressions ionstant declarationare evaluated at compile-time.
To simplify the exposition of our model we assume some standard syntactical reductions as
indicated in Tablel. The correctness of these replacements with respg2ia@an easily
be checked on the basis of our semantics model for C

2.1.1. Control-flow analysis

During the static program analysis where the compiler has to verify that the given program
is well-typed, predicateseachableand normal with the following intended meaning are
computed for statements, using the type information contained in the attributed syntax tree
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Table 1
Standard syntactical reductions

exp, &&exp

exp || exp

if ( exp stm

++vexp

- vexp

int x=1, y, z=x*2;

for ( rloc=expg tst step stm

exp ? exp, : false
exp ?true: exp
if ( exp stmelse ;
vexpr= 1
vexp=1
int  x; x=1;int y;int gz z=x%*2;
{ tloc; for ( loc=-expg tst; step stm}

Table 2
Reachability rules for €7

sis a function body

reachablé; )

reachablée; )

reachable{} )

reachablé{s...})

normal(s;) in{ ...s;sjy1...}
reachablégoto /;)in{...l:s...}
normal(s)

reachablgif ( ¢) spelse so) A e # false
reachablgif ( ¢) sy else s2) A e # true
normal(s1) v normal(s)
reachablgéwhile (  ¢) s) A e # false
reachabléwhile ( ¢) s) A e # true
reachablgbreak; )ins

= reachablés)

= normal(; )

= normal(e; )

= normal{} )

= reachablés)

= reachablés; 1)

= reachablél: s)

= normal{ ...s})

= reachablésq)

= reachablésp)

= normal(if ( e) spelse sp)
= reachablés)

= normal(while ( ¢) s)
= normal(while ( ¢) s)

as the result of parsing and elaboration:

reachablégstm) < stmcan be reached
normal(stm <= stmcan terminate normally
<= the end point o6tmcan be reached

One of the language design goals was to guarantee the following two properties for programs

to be accepted by the compiler:

e during the program execution, onlgachablepositions are reached,
e normal termination happens only mormal positions.

These two properties are obtained by checking two sufficient conditions via so-called reach-
ability rules, which can be inductively defined fot£in Table?2 (similarly for do, for ,
switch ).3 For constant boolean expressions in conditional and while statements we as-
sume that they are replaced in the abstract syntax tréseiby or false

Unreachable statements indicate programming errors and therefore generate compile-
time warnings. Function bodies that can terminate normally generated compile-time errors,
since at run-time execution could fall off the bottom of the code array.

3We include these rules here to place the corresponding natural language specifid2idoira firm ground
for a mathematical proof of the above two properties as part of a type safety prodf.for C
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( Intermediate Language (IL) )

C# Programs IL_0000: Idc.i4.7
IL_0001: stloc.0

type safe

programs
(undecidable)

C# Compiler

void Main() {
inti=7,

)...

accepted
by the
IL Verifier

definite
assignment

Fig. 3. Definite assignment and IL verification.

Another language design goal was to achieve the type safety of well-typgaac
grams, i.e. that (a) variables at run-time contain values thatempatiblewith the declared
types, and (b) expressions are evaluated at run-time to values titanapatiblewith their
compile-time types. Among the desired consequences of the type safety of a program one
has that at run-time its variables will never contaimdefinedsalues, that there are man-
glingreferences, that the program canootrupt the memory, and that the dynanmethod
lookupalways succeeds. Using the notation explained in the next section such invariants
can be made precise and be proven to hold under appropriate assunfptions.

To guarantee the type safety the compiler checks a sufficient condition computing pred-
icatesbefore after (for occurrences of statements and expressions in a function body) and
true, false (for the two possible evaluation results of boolean expressions), which imple-
ment the so-called definite assignment rules to assure that a variaelénisely assigned
before its value is used. The situation is illustrated in BigJnfortunately the picture does
not reflect reality. Microsoft has decided that in verified IL (intermediate language) code
local variables are initialized by the run-time system with zero vafuetence, also source
code programs that do not fulfill the definite assignment constraints are accepted by the IL
verifier.

A variable occurring in a position is called definitely assigned there, if on every execution
path leading to that position (in the abstract syntax tree) a value is assigned to the variable.

4For example the following invariants can be proved to hold at run-timeb¢&rgpos < Definedwhere
Defined = {x € Loc | memlocals(x)) # Undef}, (b) after(poy < Definedif valuegpos = Norm or
valuegpos € Value Specifically for boolean expressions hotdse(pos < Definedif valuegpos = True
the same fofalse Such proofs can be carried out on the basis of the model developed in this paper, using the
pattern developed if86, Chapter 8for proving that Java is type safe. For a different approach2gje

5 Maybe to simplify the job of the JIT verifiers, as one of our referees suggested.
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Table 3

Definite assignment for statements

s is a function body beforgs) = ¢

; after(; ) = beforq; )

exp beforgexp = beforgexp ), after(expg ) = after(exp

break; after(break; ) = vargbreak; )

continue; after(continue; ) = vargcontinue; )

goto I; after(goto [; ) = vars(goto ;)

stm={s1...s1} beforgs1) = beforgstm), after(stm = after(s,),
befores; 1) = after(s;) N goto(s;+1) where
goto(l: s) =

(M {beforggoto ;) | goto [; reachable irstm}
andgoto(s) = vars(s) if s is not a labeled statement

stm=if( e¢) spelse s» beforge) = beforgstm), befores1) = true(e)
beforesp) = falsele), after(stm = after(sq) N after(sp)
stm=while( ¢) s beforde) = befordstm), beforgs) = true(e),

after(stm) = falsge) N break(s) where
break(s) = ({beforgbreak; ) | break; reachable i}

Thus the intended meaning of the above predicates is as follows, where by “elaboration” of
anitemwe mean “execution”, iitemis a statement, and “evaluation” if it is an expression:

x € beforgitem): xis definitely assignetieforethe elaboration otem

x € after(item) : xis definitely assignedfter normal elaboration otem
x etrue(exp : xis definitely assignedfter expevaluates tdrue

x € falsgexp : xis definitely assignedfter expevaluates tdalse

To provide a basis for a mathematical analysis, we turn the verbally stated definite as-
signment rules of36, Section 12.3.3into a precise set of equational constraints, where
vars(stm) = {x | stmis in the scope at}.

Table 3 contains the constraints for the statements. Tdldentains the equations for
specific boolean expressions, which are imposed for the eager (short-circuit) evaluation
of boolean expressions. Note that there is no equation in Palde after sets since by
definitionafter(exp = true(exp N falsalexp. If expis a boolean expression which is not
an instance of one of the expressions in Tablhen the following are constraints fexp
true(exp = after(exp andfalseexp = after(exp.

Table 5 contains the equations for non-boolean expressions. In all other casesg, if
is an expression which has tdé&ect subexpressions, ey, . .., e,, then the left-to-right
evaluation scheme yields
e beforge;) = beforgexp,

e beforde; 1) = after(e;) fori € [1..n — 1],

o after(exp = after(e,).

Due to the goto statement the above constraints do not specify in a unique way the sets of
variables that have to be considered as definitely assigned. Consider the following block
(from [21]):

{inti=1;L: gotoL;}
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Table 4
Definite assignment for boolean expressions

true true(true ) = beforgtrue ), falsgtrue ) = vargtrue )
false true(false ) = vargfalse ), falsgfalse ) = beforgfalse )
exp="'e beforge) = beforgexp), true(exp = falsele)

falsgexp = true(e)
exp= (e1 &&ep) beforgeq) = beforgexp), beforges) = true(eq),

true(exp = true(ep), false(exp = falsgeq) N falselen)
exp= (e1|| e2) beforgeq) = beforgexp), beforgey) = falsgeq),

true(exp = true(eq) N true(en), falselexp = falsger)
exp= (eg?e1: e) beforgeq) = beforgexp), beforgeq) = true(eq)

beforgey) = falsgeg), true(exp = true(eq) N true(en)
falsgexp = falseleq) N falselen)

Table 5
Definite assignment for arbitrary expressions

loc loc € beforgloc), after(loc) = beforgloc)
lit after(lit) = beforelit)
exp= (loc=¢) beforge) = beforgexp), after(exp = after(e) U {loc}
exp= (loc op=e¢) loc € beforgexp, beforge) = beforgexp
after(exp = after(e)
exp= (eg?e1: e) beforgeq) = beforgexp), beforgeq) = true(eq)

beforgey) = falsgleg), after(exp) = after(eq) N after(er)

Then the constraints of the definite assignment analysis are satisfied folpdfotkL:

goto L; )= ¢ andbeforgL: goto L; ) = {i}. Hence during the analysis the greatest
sets of variables that satisfy the constraintstfeforeandafter have to be computed (cf.
[21]). For blocks without goto statements, however, it can be proved from the above axioms
that thebeforeset determines thafter set in a unique way.

2.2. Dynamic semantics f@1

The dynamic semantics foifg describes the effect of statement execution and expression
evaluation upon the program state, so that the transition rule fgr(e same for its
extensions) has the form

EXECCSHARP; =
EXECCSHARFEXP;
EXECCSHARPSTM;

The first subrule defines one execution step in the evaluation of expressions; the second
subrule defines one step in the execution of statements.

To make the further model refinements possible via purely incremental extensions, our
definition proceeds by walking through the attributed syntax tree and computing at each
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node the effect of the program construct attached to the node. We formalize the walk by
a cursorp»-, whose position in the tree—represented by a dynamic fungimPos—is
updated using static tree functions, leading from a node in the tree dowrfitstitshild,

from there to theextbrother orupto the parent node (if any), as illustrated by the following
self-explanatory example. The movespafs contain implicitly the control-flow graph of

Cti. A function label: Pos — Labeldecorates nodes with the information which identifies
the grammar rule associated to the node. For the sake of notational succinctness we use
concrete syntax of £to describe the labels, thus avoiding the explicit introduction of
auxiliary non-terminals the reader probably does not want to see. In the following example
the four possible cursor positions are reachable from the root by following the tree functions
first, nextandup. Thelabel of the root node is the auxiliary non-terminf] identifying the
grammar rule which produces in one step exp stm else stnp.

y\\ if ( exp stm else stnp
next next

.—».—».

exp stmy

For updating the values of local variables in the memory we use two dynamic functions
locals Loc — Adr andmemAdr — SimpleValueJ {Undef}, which assign to local vari-
ables memory addresses and store the values there. Singe the&values are of simple
types, the equatiovialue= SimpleValue Adr holds, which will be refined in the extended
models to include also references and structs. The uniquely identified local variables are
modeled by stipulatind.oc = Identifier x Pog wherePosis the set of positions in the
abstract syntax tree.

The indirection through memory addresses is not really needetyini€Ci7 one could
assign values directly to local variables without storing them in an abstract memory. The
addresses, however, are needed later for call-by-referenceefittandout parameters
(one of the major differences between &d Java from the modelling point of view).

Statements can terminate normally or abruptly, wherefintBe reasons of abruption are
from the setAbr = Break| Continue| Goto(Lab), to be refined for the extended models.
We use a dynamic functiovalues Pos — Resultto store intermediate evaluation results
from the set

Result= ValueU Abr U {Undef, Norm}.

For the initial state we assume

e ment(i) = Undeffor everyi € Adr,

e pos= root position of the attributed syntax tree,

e locals(x) € Adr for every variablex. 8

As intermediatevaluesat a positiorp the cursor is at or is passing to, the computation may
yield directly a simple value; &ddressPasions as defined below it may yield an address;

6 This amounts to assuming that the compiler chooses an address for each variable.
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but it may also yield anemValuavhich has to be retrieved indirectly via the given address
(where for Gz the memory value of a given tydeat a given addresadr is defined by
memValuéadr, r) = mentadr); the parameterwill become relevant only in the refinement
of memValuen Cip and Gf,). This is described by the following two macros:

YIELD(val, p) =
valuegp) := val

pos:= p

Y IELDINDIRECT(adr, p) =
if AddressPo&) then YIELD(adr, p)
elseYIeELD(memValuéadr, type(p)), p)

We will use the macros in the two formsietb(val) = YIeLD(val, poy and
YieLbUp(val) = YIeLD(val, up(po9). Similarly we have two forms also for the second
macro: YIELDINDIRECT(adr) and YIELDUPINDIRECT(adr).

Being in a context where an address and not a value is required can be defined as follows:

AddressPog) <= FirstChild(x) A
(label(up(x)) € {++, -- } Vv label(up(x)) € Aop
where FirstChild(x) < first(up(a)) = a

To further reduce any notational overhead not needed by the human reader, in spelling out
the rules below we identify positions with the occurrences of the syntactical constructs nodes
are decorated with. This explains updates pks:= expor pos:= stm which are used as
shorthand for updatingosto the node labeled with the corresponding occurrencexpf
respectivelystm / Furthermore, for a succinct formulation we use a macnatextpos to
describe the context of the currently to be handled expression or statement or intermediate
result, which has to be matched against the syntactically possible cases (in the textual order
of the rule) to select the appropriate computation step. If the elaboration of the subtree at
the positiorposhas not yet started, th@ontextpos is the construct encoded by the labels
of posand of its children. Otherwise, [foscarries already its result walues contextpos
is the pseudo-construct encoded by the labels of the parent ngasaind of its children
after replacing the already evaluated constructs by trairesin the corresponding node.
This explains notations likaop > val to describe theontextof pos whereposis marked
with the cursor ®), resulting from the successful evaluation of the argunssmptof the
constructuop exp(encoded byip(pos and its childpog, just beforeuopis applied toval
to YIELDUP(Apply(uop, val)).

It thus remains to define the two submachines for expression evaluation and statement
execution. This is done in a modular fashion, grouping behaviorally similar instructions
into one parameterized instructiéh.

7 An identification of this kind, which is common in mathematics, has clearly to be resolved in an executable
version of the model. See for example the formulation of the ASM model for Jd@8Jn

8The specializations can be regained instruction-wise by mere parameter expansion, a form of refinement that
is easily proved to be correct.
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2.2.1. Expression evaluation rules

We are now ready to define the machinegeEECSHARFEXP; in a compositional way,
namely proceeding expression-wise: for each syntactical form of expressions there is a set
of rules covering each intermediate phase of their evaluation. The machine passes control
from unevaluated expressions to the appropriate subexpressions until an atom (a literal or
a local variable) is reached. It can continue its computation only as long as no operator
exception occurs, as a consequence it does not distinguish between checked and unchecked
expression evaluation—the extension by rules to handle exceptions is defined in the model
extension @¢. The expressions for numeric casts will be refined fimw@nd in Cig. The
macro WRITEMEM(adr, ¢, val) denotes her@iem(adr) := val; it will be refined in the
model for Gip.

EXECCSHARFEXP; = match contextpos
lit — YIELD(ValueOfLiterallit))
loc — YIELDINDIRECT(locals(loc))
uop exp — pos:= exp
uop”val — if =UopExceptiofuop, val) then YIELDUP(Apply(uop, val))

exp, bop exp — pos:= exp
>val bop exp — pos:= exp
val; bop®val, — if —BopExceptiotbop, valy, valy) then
Y IELDUP(Apply(bop, valy, valp))
exp ? exp . exp — pos:= exp
>val ? exp : exp, — if val then pos:= exp elsepos:= exp,
True? ®val: exp — YIELDUP(val)
False? exp: »val — YIELDUP(val)

loc=exp — pos:=exp
loc = *val — {WRITEMEM(locals(loc), typgloc), val), YIELDUP(val)}

(typd exp — pos:=exp
(type ™val — if type(pos € NumericTyper typee NumericTypehen
if mUopExceptioftype val) then

Y IELDUP(Conver(type val))
VEXP OfF EXp — POS:= vexp
>adr op= exp — pos:= exp
adr op= "val — let t = typgup(pos) and v = memValuéadr, ) in

if —BopExceptiorop, v, val) then

let w = Apply(op, v, val) and r = Conver{r, w) in
{WRITEMEM(adr, ¢, r), YIELDUP(r)}

vexp op — pos:= vexy/ for postfix operatorep € {++, -- }
>adr op — let old = memValuéadr, typg(posg) in
if =UopExceptiolop, old) then
WRITEMEM(adr, typgup(pos)
Apply(op, old))
YIeLDUP(old)
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checked (exp — pOS:= exp
checked (®val) — YIELDUP(val)
unchecked (exp — pos:=exp
unchecked (*val) — YIELDUP(val)

Being in a checked context is used to define whether operators throw an overflow exception
(in which case a rule will be added in the model faxeQ: The general rule is that operators

for the typedecimal always throw overflow exceptions whereas operators for integral
types only throw overflow exceptions in a checked context except for the division by zero.
By default every position is unchecked, unless explicitly declared otherwise.

Checkedn) < label(x) = Checkedv
(label(o) # Uncheckedh up(a) # Undef A Checkedup(«)))

UopExceptiofuop, val) < Checkedpos A Overflow(uop, val)

BopExceptioftbop, valy, valy) <
DivisonByZergbop valy) v DecimalOverflowbop vals, valp) v
(Checkedpos A Overflowbop, vals, valp))

2.2.2. Statement execution rules

The machine EECCSHARPSTM; is defined below statement-wise. It transfers control
from structured statements to the appropriate substatements, until the current statement
has been computed normally or abrupts the computation. Abruptions trigger the control
to propagate through all the enclosing statements up to the target labeled statement. The
concept of propagation is defined fot£in such a way that in the refined models it is
easily extended to abruptions due to return from procedures or to exceptionsase of
a new execution of the body of a while statement, the previously computed intermediate
results have to be clearéd. For the sake of brevity we skip the analogous transition rules
for statementslo, for , switch , goto case , goto default . Since we formulate
the model for the human reader, we also use thaotation, for example in the rules for
abruption or for sequences of block statements. This avoids having to fuss with an explicit
formulation of the context, typically determined by a walk through a list. This simplification,
whichis tailored for the human reader, can easily be resolved for an executable model version
without increasing the number of rules.

EXECCSHARPSTM; = match contextpos
; — YIELD(Norm)
exg — pos:=exp
>val; — YIELDUP(Norm)

9 For Ci7 alone it would be simpler to transfer control directly by updapogto the value of a corresponding
static function.
10CLEARVALUES is needed in the present rule formulation, which is close to an executable format. In a more
abstract SOS-style, as used for the Java modg6h it would not be necessary because there the intermediate
valuescan be written into a dynamic function for the still to be executed rest program.
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break; — YIELD(Break)
continue; — YIELD(Continue
goto lab; — YIELD(Goto(lab))

if ( exp stmy else stmp — pos:= exp

if ( ™val) stmy else stmp — if val then pos:= stm elsepos:= stmp
if ( True) ®Normelse stm — YIELDUP(Norm)

if ( False stmelse »Norm — YIELDUP(Norm)

while ( exp stm — pos:= exp

while ( »val) stm — if val then pos:= stm
elseYIeLbUrP(Norm)

while ( True) ®Norm  — {pos:= up(pos, CLEARVALUES(UP(POS)}

while ( True) *Break  — YIELDUP(Norm)

while ( True) »Continue — {pos:= up(pos, CLEARVALUES(UP(POS)}

while ( True) »abr — YIELDUP(abr)

type lo¢ — YIELD(Norm)

lab: stm — pos:= stm

lab: ®»Norm — YIELDUP(Norm)
checked block — pos:= block
checked ®Norm — YIELDUP(Norm)
unchecked block — pos:= block
unchecked ™Norm — YIELDUP(Norm)

. Pabr ... —if up(pos # Undef A PropagatesAbiup(pos) then
YIELDUP(abr)

{} — YIELD(Norm)

{stm...} — poOSs:= stm

{ ... "Norm} — YIELDUP(Normy)
{...”Normstm...} — pos:=stm

{...”Gotal) ...} — leta = GotoTargetfirst(up(pos9), /)

if o« = Undef then
{pos:= «, CLEARVALUES(UP(P09)}
elseYIELDUP(Gota(/))

{...%abr ...} — YIELDUP(abr)
In Cli7 abruptions are propagated upwards except at the following statements:
PropagatesAbix) <= label(«) ¢ {Block While, Do, For, Switch

To compute the target of a label in a list of block statements we define:

GotoTargeto, 1) =

if label(e) = Lab(l) then «

elseif next(o«) = Undef then Undef
elseGotoTargetnext(«), )
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The auxiliary macro CEARVALUES() to clear all values in the subtree at positiocan be
defined by recursion as follows, proceeding from top to bottom and from left to Hght:

CLEARVALUES(0) =
valuego) := Undef
if first(o) # Undef then CLEARVALUESSEQ(first(w))

CLEARVALUESSEQ(%) =
CLEARVALUES(o)
if nextow) # Undefthen CLEARVALUESSEQ(next(x))

3. Ctc: refining Cii7 by static class features

In this section we refine the imperative corg;Qo Cic by adding classes (modules)
concentrating upon their static features (static fields, methods, constructors), including their
initialization and the parameter mechanism that provides vadfie andout parameters.

For such a refinement we (a) extend the ASM universes and functions, or introduce new
ones, to reflect the grammar extensions for expressions and statements, (b) add the appro-
priate constraints needed for the static analysis of the new items (type constraints, definite
assignment rules), (c) extend some of the macros,RrapagatesAbix), to make them

work also for the newly occurring cases, (d) add rules which define the semantics of the
new instructions that operate over the new domains.

3.1. Static semantics @it

In C¢ a program is a set of compilation units, each coming with “using directives” and
declarations of names spaces (including a global namespace) and types (for classes and
interfaceg?) in the global namespace. For simplicity of exposition, we disregard “using”
directives and nested namespaces by assuming everywhere the adoption of (equivalent)
fully qualified names. The precise syntax of classes and their static members, the rules for
the accessibility of types and members via the access modifiers (public, internal, protected,
private) and illustrating examples are spelt ou{i]. We define here the extension of
the grammars fovexp Sexp Stmand thereby of the corresponding ASM domains, which
reflects the introduction of sets Glasses with statid=ields and statidéethods in Gi¢. The
new setArg of arguments appearing here reflects that besides value parametenef also
andout parameters can be used.

Vexp::= ... | Feld | Class'. ' Field
Sexp::= ... | Meth( [Args]) | Class'. ' Meth( [Args])

1 Intuitively it should be clear that the execution of this recursive ASM provides simultaneously—in one step—
the set of all updates of all its recursive calls, as is needed here for the clearing purpd4€] $eea precise
definition.

12 Note that struct and enum types and delegates are introduced by further refinement steps below.



E. Borger et al. / Theoretical Computer Sciemge( i) ii—in 17

Arg ::= Exp| ‘ref 'Vexp| ‘out ’ Vexp
Args ::= Arg {*, ’ Arg}
Stm = ... | ‘return ' Exp‘;’|‘return '*;’

The type constraints for the new expressions and the return statement are spelLBlt in
The difference betweenref andout parameters at function calls and in function bodies is
reflected by including a8ddressPdsions all nodes whose parent node is labeledddy
orout and by adding the following definite assignment constraints:
e ref arguments must be definitely assigrmdorethe function call.
e out arguments are definitely assigneftier the function call.
e ref parametersandvalue parameters of afunction are definitely assigned at the beginning
of the function body.
e out parameters must be definitely assigned when the function returns.
Therefore the definite assignment constraints for expressions are extended by the follow-
ing constraints for general argument expressions in function calls anéfforand out
argument expressions:
e Forexp= M(arg9 :
o beforgargs) = beforgexp
o RefParamg&rgs) C after(args)
o after(exp = after(args) U OutParamsargs)
e Forexp= (ref ¢)orexp= (out e):
o beforde) = beforgexp
o after(exp = after(e)
The definite assignment constraints for statements are extended for function bodies and
return statements as follows:
o If sis the body ofM, then
o beforgs) = ValueParaméM ) U RefParameM)
e If stm=return; isinM, then
o OutParamsgM) C beforgstm)
o after(stm) = vars(stm
e If stm=return e¢; isinM, then
o beforde) = beforgstm)
o OutParamgM) C after(e)
o after(stm) = vars(stm
The presence of to-be-initialized classes and of method calls is reflected by the introduction
of new universes to denote methods, the initialization status of a type (which will be refined
below by exceptions) and the sequence of still active method calls (frame stack):

Meth = Typex Msig
TypeState= Linked | InProgress| Initialized
Frame= Meth x Posx Localsx Values
whereValues= (Pos— Resulj andLocals= (Loc — Adr)

A method signaturévisig consists of the name of a method plus the sequence of types
of the arguments of the method. A method is uniquely determined by the type in which
it is declared and its signature. The reasons for abruptions are extended by
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method return:

Abr = ... | Return| ReturnValue
3.2. Dynamic semantics Qfi7

To dynamically handle the addresses of static fields (global or class variables), the ini-
tialization state of types, the current method, the execution stack and the (initially) to be
initialized type we use the following new dynamic functions:

globals Typex Field — Adr frames List(Frame
typeStateType— TypeState meth Meth

We extend the stipulations for the initial state as follows:

e typeStatér) = Linkedfor each class

o meth= EntryPoint:Main() [EntryPointis the main class]

e pos= bodymeth [The root position of the body]

e |ocals = values= ¢ andframes= []

The submachine=CCsSHARR: extends the machineXecCsHARP; for Ci7 by additional

rules for the evaluation of the new expressions and for the execution of return statements. In
the same way the further refinements in the sections below consist in the parallel addition
of appropriate submachines.

EXECCSHARP: =
EXECCSHARP,
EXECCSHARPEXP¢
EXECCSHARPSTM ¢

3.2.1. Expression evaluation rules

The rules for class field evaluation in the submachiReESHARFEXP- are analogous
to those for the evaluation of local variables iRBEECSHARFEXP;, except for usinglobals
instead oflocalsand for the additional clause for class initialization. The rules for method
calls use the macraoivokeSTATIC defined below and reflect that the arguments are evaluated
from left to right.13

EXECCSHARPEXPc = match contextpos
c.f — if Initialized(c) then YIELDINDIRECT(globalgc:: f))
elselNITIALIZE (¢)

cf =exp — pos:=exp

c.f =™val — if Initialized(c) then
WRITEMEM(globalgc:: f), typec:: f), val)
YIELDUpP(val)

elselNITIALIZE (c)

13These are the rules to be modified in case one wants to specify another evaluation order for expressions,
involving the use of the ASMchooseconstruct if some non-deterministic choice has to be formulated. For a
discussion of such model variations we refef40] where an ASM model is developed which can be instantiated
to capture the different expression evaluation strategies in Ada95, C, C++, Jamad €ortran.
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cm(args) — pos:= (args
c.m™(vals) — INVOKESTATIC(c::m, val9)
ref vexp — pos:= vexp

ref »adr — YIELDUP(adr)

out vexp — pos:= vexp

out ®adr — YIELDUP(adr)

0 — YIELD([])
(arg, ...) — pos:= arg
(valy, ..., "»val,) — YIELDUPR(|[vals,...,val,])

(...”val,arg...) — pos:=arg

The macrolvoKESTATIC invokes the method if the initialization of its class is not triggered,
otherwise it initializes the class. The initialization of a class (or struct, see Sefjtisn

not triggered if the class is already initializéd. For methods which are not declared
external, N\VOKEMETHOD updates the frame stack and the current frame in the expected
way, allocating viaMiTLocALsfor every local variable or value parameter anew address and
copying every value argumentthere. Since we will also have to deal with external methods—
whose declaration includes amtern modifier and which may be implemented using a
language other thaniS—we provide here for their invocation a submachimedKEEXTERN,

to be defined separately depending on the class of external (e.qg. library) méhatis.
predicateStaticCtorrecognizes static class constructors; their implicit call interrupts the
member access pos to later return to the evaluation pbsinstead ofip(pos. We separate

the current frame—consisting ofeth pos localsandvalues—from the stack of such frames

to notationally smoothen the transition froni-£to Cfc.

INVOKESTATIC (c::m, vals) =
if not Triggerlnit(c) then INVOKEMETHOD(c::m, vals)

elselNITIALIZE (¢)
where Triggerlnit(c) = —Initialized(c)

INVOKEMETHOD(c::m, vals) =
if extern € modifiergc::m) then INVOKEEXTERN(c::m, vals)
else letp = if StaticCtorn(c::m) then poselseup(pos in
frames:= push(frames (meth p, locals, values)
meth :=c:m
pos := body(c::m)
values:= ¢
INITLOCALS(c::m, vals)

14 As analyzed iff20], it is also not triggered if the class is marked with the implementatiorbiédigrefieldinit
indicating that the reference of the static method does not trigger the class (or struct) initialization. If one wants
to model this flag the definition has to be refinedrt@gerlnit(c) = —lInitialized(c) A —beforefieldinitc) and
furthermore in Sectiob.

15For an illustration of this use of external methods see below the model for delegates.
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The following definition for the initialization of local variables reflects thatgermits to
pass function call parameters by value, as Java does, but alsf rence. Alsoout
parameters are allowed, treatedrels parameters except that they need not be definitely
assigned until the function call returd§.

In the following definition, all (also simultaneous) applications of the external function
newduring the computation of the ASM are supposed to provide pairwise different fresh
elements from the underlying domakdr. See[22,16, 2.4.4]for a justification of this
assumption. See also the end of Sectlowmhere we provide an abstract specification of
the needed memory allocation to addresses of references and objects of struct type and to
their instance fieldparamindexc::m, x) yields the index of the formal parametein the
signature ot::m.

INITLOCALS(c::m, vals) =

forall x € LocalVargc::m) do /I addresses for local variables
locals(x) := new(Adr, type(x))
forall x € ValueParamée::m) do /I copy value arguments

let adr = new(Adr, type(x)) in
locals(x) := adr
WRITEMEM(adr, type(x), vals(paramindexc::m, x)))
forall x € RefParamé&::m) U OutParamsc::m) do /I ref, out arguments
locals(x) := vals(paramIndeXc::m, x))

3.2.2. Statement execution rules

The rules for method return in the submachineE&CSHARPSTM ¢ trigger an abruption
upon returning from a method, resulting (via the propagation of this abruption to the begin-
ning of the method body where it occurred) in the execution of the machimdvVEETHOD.
The rule to YELDUP(Norm) does not capture falling off the method body, but yields up
the result of the normal execution of the invocation of a method with void return type in an
expression statement.

EXECCSHARPSTM¢ = match contextpos
return exg — pos:= exp
return »val; — YIELDUP(Return(val))
return; — YIELD(Return

Return — if pos= body(meth A =Emptyframes then
ExiTMETHOD(Norm)

Returnval) — if pos= bodymeth A —Emptyframeg then
ExiITMETHOD(val)

»Norm, — YIELDUP(Norm)

The machine EITMETHOD restores the frame of the invoker and passes the result value
(if any). Upon normal return from a static constructor it also updatesyipeStateof the

1670 reflect different parameter passing mechanisms as encountered in other programming languages, due to the
modular character of our model essentially only the above submachihetaLs would have to be appropriately
modified.
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relevant class ahitialized. We also add a rule REELOCALS to free the memory used
for local variables and value parameters, using an abstract nateeVIEMORY of how
addresses of local variables and value parameters are actually de-allbtated.

ExITMETHOD(result) =
let (oldMeth oldPos oldLocals oldValue$ = top(frames in

meth := oldMeth

pos := oldPos

locals := oldLocals

frames:= pop(frameg

if StaticCtormeth A result= Normthen
typeStatéypgmeth) := Initialized
values:= oldValues

else
values:= oldValuesd {oldPos— result}
FREELOCALS
FREELOCALS =

forall x € LocalVar§meth U ValueParamémeth do
FREEMEMORY(locals(x), typegx))

Following[27, Sections 17.11,17.4.5.1,10.11,10.4.5.ypec is considered as initialized
if its static constructor has been invoked (see the updatgpefState) to InProgressin
INITIALIZE below) or has terminated normally (see the updatypéStatée) to Initialized
in ExITMETHOD above). We therefore define:

Initialized(c¢) <= typeStaté&) = Initialized v typeStaté) = InProgress

To initialize a class its static constructor is invokedcfor = class constructor). This
macro will be further refined in ; to account for exceptions during an initialization.

INITIALIZE (¢) =
if typeStaté&) = Linkedthen
typeStatér) := InProgress
forall f € staticFieldgc) do
let t = type(c::f) in WRITEMEM(globalgc:: f), ¢, defaultValuér))
INVOKEMETHOD(c::.cctor , [])

Note that in G the initialization of a class does not trigger the initialization of its direct
base class, differing on this point from Java where the rule for calling static constructors
(see[36, Fig. 4.5) triggers the initialization of the superclass in case the superclass is not
yet initialized.

With respect to the execution of initializers of static class fields the ECMA standard
[27, Section 17.4.5.1%3ays that the static field initializers of a class correspond to a se-
guence of assignments that are executed in the textual order in which they appear in the

17Under the assumption of a potentially infinite supply of addresses, which is often made when describing the
semantics of a programming language, one can dispense wuti 6CALS.
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class declaration. If a static constructor exists in the class, execution of the static field
initializers occurs immediately prior to executing that static constructor. Otherwise, the
static field initializers are executed at mmplementation-dependetitme prior to the first

use of a static field of that class. Our model expresses the decision taken by Microsoft’s
current G compiler, which in the second case creates a static constructor. If one wants
to reflect also the non-determinism suggested by the ECMA formulation, one can formal-
ize the implementation-dependent external control by a monitored funiyi@ToBelni-
tialized (which by the way can also be used for the classes and structs classified by an
implementation flag abeforefieldinittype). The @ interpreter then takes the following
form:18

if typeToBelnitialized# Undef then
INITIALIZE (typeToBelnitialized
elseEXECCSHARP

4. Refinement Gl of Ci¢ by object related features

In this section we refine the static class features §f 8y adding objects (for class
instances, comprising arrays and structs) together iwittancefields, methods and cons-
tructors'® as well as inheritance (including overriding and overloading of methods). Ac-
cordingly we extend the ASM universes and functions &f @ reflect the new expressions
and statements together with the appropriate constraints and new rules, using appropriate
refinements of some of the macros to define the semantics of the new instructiahs.of C
For the detailed definition of the syntax of (members of) classes, interfaces, structs, etc., and
of the constraints for the new modifiebstract , sealed ,readonly ,volatile
virtual , override ) together with illustrating examples, we refer the read¢i &j.

4.1. Static semantics @ty

The first extension concerns the st Vexp Sexpwhere the new reference and array
types appeaRankserves to denote the dimension of array typamArray Typestands for
value types, classes and interfaces and will be extendetiprt@comprise also delegates.
Value types represent a feature that distinguishigfsdn Java. In @z we have cast expres-
sions( t) expwhere the type and the type oéxpare numeric types. Here, we extend the
grammar tq ¢) expwheret and the type oéxpcan be any type. RefExps an expression

18This is discussed in detalil 20]. The reader finds there also a detection of further class initialization features
that are missing in the ECMA specification, related to the definition of when a static class constructor has to be
executed and to the initialization of structs.

19 pestructors or finalizers which relate to garbage collection are not modeled here.
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return type

value type reference type

class type
enum type struct type interface type

array type
simple type delegate type

null type

bool (numeric type)
|

(integral type) (floating—point type) (decimal )

byte float
ushort double

uint
ulong

Fig. 4. The classification of types oftC

of a reference type and @rrayExpis an expression of an array type.

Exp == ...|'null "|‘this ’|‘typeof ‘(' RetType)’'|Exp‘is ' Type
| Exp‘as’ RefTypd ‘(' Type') ' Exp
| ‘new’ NonArrayType[ ' Exps']’ {Rank [Arraylnitializer]

Vexp ::= ... | Vexp'. ' Field | RefExp'. ' Field | ‘base . ' Field
| ArrayExp‘[’ Exps‘]’

Sexp:=...| ‘new Type( [Args]) | Exp‘.’ Meth( [Args])

| ‘base’*.’ Meth( [Args])
Exps ::= Exp{‘, ' EXp}
Rank::: n[ H { L’ H } l] Ll
Athis inaninstance constructor or instance method of a struct is considered ke a
When athis occurs in a class it is not\&exp
The extended type classification where simple types become aliases for struct types is
re-assumed by Figl. We refer the reader tfl2] for the detailed list of new type con-
straints. Also the constraints for overriding and overloading of methods and the resolution
of overloaded methods at compile-time are spelt out there.
The subtype relation (i.e. the standard implicit conversion) is based on the inheritance
relation—defined as a finite tree with rombject —together with the “implements” re-
lation between classes and interfaces. It is defined as follows (and should not be confused
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with the classification of types in Fig):

T any type—> T<object andT<T,

classSderived fromT — ST,

class, interface or stru&implements interfac& — S<T,

T array type—= T'<System.Array

T delegate type—= T<System.Delegate

T value type—= T<System.ValueType

T array or delegate type= T <System.ICloneable ,

T reference type= A<T, [A is the null type],

e SandT reference typesS<7T = S[ R1] - [ Re] <T[ R1] ---[ R«] -

Note that types of one category in Ffgcan be subtypes of another (disjoint) category. For

example, if a struct typ8implements the interfade then (the value type§is considered

to be a subtype of (the reference type)

We list here the additional definite assignment rules for local variables of struct
type:

e If pis alocal variable of a struct typ® thenp. f is considered as a local variable for
each instance fielflof S

e Alocal variablep of struct typeSis definitely assigned—

p.f is definitely assigned for each instance fietd S.

We assume that as a result of field and method resolution the attributed syntax tree has exact

information. Each field access has the fafmf wheref is a field declared in the type

Each method call has the forfit:m( args) wheremis the signature of a method declared

in typeT. Moreover, at compile-time certain expressions are reduced to basic expressions

as follows.

For the base access of fields and methods we have:

e base. finclassCisreplaced byhis. B:: f, whereBis the first base class &fwhere
the fieldf is declared.

e base. m(args) inclasCisreplacedbyhis. B::M( args) ,whereB::M isthe method
signature of the method selected by the compiler (the set of applicable methods is con-
structed starting in thbase clas®of C). This selection algorithm is described [th2],
formalizing the conditions stated [27, Section 14.4.23].

For instance field access and class instance creation we have:

o If fis afield, therf is replaced byhis. T::f, wheref is declared irT.

e Let T be a class type. Then the instance creatiew 7::M(args) is replaced by
new 7. T::M(args) .

Hence we split an instance creation expression into a creation part and an invocation of

an instance constructor. To make the splitting correctly reflect the intended meaning of

new T::M(args , we assume in our model that class instance constructors return the
value ofthis

For instance constructors of structs one has to reflect that in addition they need an address
for this . Also for constructors of structs we assume that they return the valinésof.

Let She a struct type. Then the following transformations are applied:

e An assignmentexp= new S::M( args) is replaced byexp S::M( args) . This reflects
that such anew triggers no object creation or memory allocation since structs get their
memory allocated at declaration time.
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e Other occurrences ofew S::M( args) are replaced by. S::M( args) , wherexis a new
temporary local variable of typ@

For automatic boxing we have:

e An assignmenvexp= expis replaced bywexp= ( 7) expif type(exp is a value type,
T = typglvexp andT is a reference type. In this case we must hgpe(exp<T .

e An argumengrgis replaced by T) argif type(arg) is a value type, the selected method
expects an argument of tydeand T is a reference type. In this case we must have
typearg)<7.

4.2. Dynamic semantics f@to

We are now ready to describe the extension of the dynamic state for the modghof C
The domain of values is extended to contain also references (assBefingAdr = ¢ and
null € Ref) and struct values/alue = SimpleValueJ Adr U Ref U Struct The setStruct
of struct values can be defined as the set of mappings $twactTypeField to Value The
value of an instance field of a value of struct typpean then be extracted by applying the
map to the field name, i.structFieldval, T, f).

Two dynamic functions keep track of thenTimeTypeRef — Type of references
and of the type objectypeObjRetType— Ref of a given type, wherdRetType::=
Type| ‘void '. The memory function is extended to store also referencesn Adr —
SimpleValueJ Ref U {Undef}. For boxing we need a dynamic functivalueAdr Ref —
Adr to record the address of a value in a boxcuhTimeTypéef) is avalue type tthen
valueAdr(ref) is the address of the struct value of tyjs¢ored in the box. The static function
instanceFieldsType— PowersefType:Field) yields the set of instance fields of any given
typet; if tis a class type, it includes the fields declared in base classes\&f use the
common programming notatiofype:Field instead of the set-theoretic product set nota-
tion. We abstract from the implementation-dependent layout of structs and objects and use
a functionfieldAdr. (Adr U Ref) x Type:Field — Adr to record addresses of fields. This
function satisfies the following properties:

o If tis astruct type thenfieldAdr(adr, z:: f) is the address of fielflof a value of typet
stored inmemat addresgdr.
e Avalue of struct type at addressdr occupies the following addressesnirem

{fieldAdr(adr, f) | f € instanceField&)}

o If runTimeTypéef) is aclass typethenfieldAdr(ref, ¢:: f) is the address of field: f of
the object referenced hegf.

e An object of clasg is represented by a refereneéwith the propertyunTimeTypé&ef)
= ¢ and occupies the following addressesriam

{fieldAdr(ref, f) | f € instanceFieldé&)}

A function elemAdr Ref x N* — Adr records addresses of array elements. ffie
reference is treated as first parameter and is passed by value. Thestmrdndexc::m,
this ) = 0 andthis is an element o¥alueParamé&::m).



26 E. Borger et al. / Theoretical Computer Sciemg(1111) ii—iii

For the refinement of theXECcCsSHARR: transition rules it suffices to add the new rule
EXECCSHARPEXP() for evaluating the new expressions, sindgydntroduces no new state-
ments.

EXECCSHARP) =
EXECCSHARP-
EXECCSHARFEXP

For better readability we organize the numerouxs & sSHARFEXP, rules for each of the
new expressions into parallel submachines each of which collects the rules for expressions
which belong to the same category (for type testing and casting, for fields, for arrays). As
analyzed in20], the invocation of an instance constructor of a class may trigger the class
initialization.
EXECCSHARPEXP = match contextpos
null  — YIELD(null)
this — YIELDINDIRECT(locals(this ))
TESTCASTEXPo
FIELDEXPo
new ¢ — let ref = new(Ref, ¢) in
runTimeTypéef) .= ¢
forall f € instanceField&) do
let adr = fieldAdr(ref, f) and t = typgf) in
WRITEMEM(adr, 7, defaultValuér))
YIELD(ref)
exp T::M(args) — pos:= exp
>val. T::M(args) — if StructValuelnvocatiofup(pos) then
/I create home for struct value
let adr = new(Adr, typgpo9) in
WRITEMEM(adr, typgpos), val)
valuegpos := adr
pos:= (arg9
val. T::M™ (vals) — if InstanceCto(M) A Triggerlnit(T) then
INITIALIZE (T")
elseif val # null then
INVOKEINSTANCE(T :: M, val, vals)
ARRAYEXP,

A struct value invocation is a method invocation on a struct value which is not stored in
a variable. For such struct values the above rule creates a temporary storage area (called
“home”) to be passed in the invocation as valu¢hi$

StructValuelnvocatiofexp 7::M(args)) <
type(exp € StructTyper exp¢ Vexp

The rules for casting in BSTCASTEXPy use the new macrol¥LDUPBOX defined below.
Note that in expressiongxpis ¢ and (r) expthe typet can be any type, whereas in
‘expas t’the typet must be a reference type. The type expis ¢’is bool , while the
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type of( ¢) expand ‘expas t'is t.

TESTCASTEXPp =
typeof( t) — YIELD(typeObjr))
expis t — pos:= exp
>valis t — if type(pos e ValueTypehen
Y IELDUP(type(po9=<?) // compile-time property
else
YIELDUP(val # null A runTimeTypéval)<t)
expas t — pos:= exp
>valas t — if type(pos € ValueTypehen
Y IELDUPBOX(type(po9), val) // box a copy of the value
elseif (val # null A runTimeTypéval)<t) then
YieLbUpP(val) // pass reference through
elseYIELDUP(null) /I convert to null reference
(1) exp — pos:= exp
(1) »val — if type(pos € ValueTypehen
/I compile-time identity
if + = typeg(pos then YIELDUP(val)
/l box value
if r € RefTypahen YIELDUPBOX(typg(po9, val)
if type(pos € RefTypahen
if r € RefTypen (val = null v runTimeTypéval)<t) then
YieLbUp(val) // pass reference through
if + € ValueTypen val # null At = runTimeTypéval) then
/I un-box a copy of the value
YIELDUP(memValuévalueAdrval), 1))

The rules for instance field access and assignmenteIDEXP, are analogous to those

for class variables, adding the evaluation of the instance, igittg\drinstead ofglobals

and instead of WITEMEM the macro 8TFIELD defined below. The second rule for instance
field access has to distinguish two cases, depending upon the statically known instance
type. Since this type information is already known at the time of static analysis, it could
be resolved by introducing two separate constructs for field access, as one of our referees
observed pointing also out that in fact the CLI has a single, overloaded instruction for field
access with overloading to be resolved by the JIT. However from the modeling point of
view, having two separate constructs for field access would lead to essentially the same two
rules we have formulated here, except for having as rule guard a matching condition for the
two constructs instead of the type test. We tyge(exp ¢:: f) = typer:: f).

FIELDEXPy =
exp tiif — pos:= exp
val. t::f — if type(po9 € ValueTypen val ¢ Adr then
YIELDUP(structField(val, type(pos), ¢:: f))
elseif val # null then
Y IELDUPINDIRECT(fieldAdr(val, ¢:: f))



28 E. Borger et al. / Theoretical Computer Sciemg(1111) ii—iii

exp. tiif = exp — pos:=exp

“val. r::f =exp — pos:= exp

valy. t::f =®val, — if val; # null then
SETFIELD (valy, z:: f, valp)
YIELDUP(valp)

Chio supports single dimensional as well as multi-dimensional arrays. Array types are read
from right to left. For exampleint[][,] is the type of single-dimensional arrays of
two-dimensional arrays with elements of tyijm¢ . By dim(n) we denote a sequence of

n —1commas, hencE[ dim(n)] is the type oh-dimensional arrays with elements of type

T. The length of théth dimension of am-dimensional array represented by a reference
ref is stored as the value dimLengtfiref, ;). Note that the rules for using array indexing
expressions as rvalue respectively as Ivalue appear together as subgro®paEXp ),
separated by pattern matching.

ARRAYEXPo =
new T[exp, ..., expll Ri] ---[ Rx] — pos:=exp
new T[l1, ..., ", exgye, .., expll Ri] ---[ Rx] — pos:=exp,q
newT[l1, ....," L1 R - [R«] —

if Vi € [1..n]1(0<I;) then

let S=T[ R1] ---[ Rt] in

let ref = newRef, [I1,...,[,],5) in
runTimeTypéef) := T[ dim»)][ R1] ---[ Rk]
forall i € [1..n] dodimLengthiref,i — 1) :=;
forall x €[0../7 —1] x --- x[0..], — 1] do

WRITEMEM(elemAd(ref, o), S, defaultValugs))

YIELDUP(ref)

expl exp, ..., exp,] — pos:= exp

>ref[ exp, ..., exp,] — pos:=exp

ref[ i1, ..., ®ik, €XQi1, ..., €XP] — POS:= exp. 1
ref[iq, ..., %i)] —

if ref £ null AVk € [1..n](0<i; < dimLengthiref, k — 1)) A
(RefOrOutArgup(pos) A typaup(pos) € RefType—
elementTypgunTimeTypé&ef)) = typgup(pos9))

then
Y IELDUPINDIRECT(elemAd(ref, (i1, ..., iy)))
expl exp, ..., expl= exp — pos:= expy
>ref[ exp, ..., €XP,] = exp — pos:= exp
ref[ i1, ..., ik, €XQi1, --., €XP] = €xp— pos:= exp1
ref[ i1, ..., ®i,] = exp — pos:= exp
ref[ i1, ..., i,] = ®val —

let T = elementType(runTimeTypéef)) in
if ref # null AVk € [1..n](0<i; < dimLengthiref, kK — 1)) A
(type(pos € RefType— runTimeTypeval)<T)
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then
WRITEMEM(elemAd(ref, (i1, ..., i,)), T, val)
YIELDUP(val)

4.2.1. Refinement of macros

Invocation of instance methods splits into virtual and non-virtual calls. The function
lookupyields the class where the given method specification is defined in the class hierarchy,
depending on the run-time type of the given reference.

INVOKEINSTANCE(T :: M, val, vals) =
if callKind(7T::M) = Virtual then /I indirect call,val € Ref
let S = lookup(runTimeTypéval), T::M) in
let this=if S € StructTypeahen valueAdrval) elseval in
INVOKEMETHOD(S:: M, [this] - vals)
if callKind(7T::M) = NonVirtualthen /I direct call,val € Adr U Ref
INVOKEMETHOD(T:: M, [val] - vals)

In Ct the notion of reading from the memory is refined by extending the simple equation
memValuéadr, r) = men{adr) of Cii7 to fit also reference and struct types. This is done by
the following simultaneous recursive definitionmemValuendgetFieldalong the given
struct type.

memValuéadr, ) =
if + € SimpleTypeJ RefTypehen mentadr)
elseifr € StructTypethen { f — getField(adr, f) | f € instanceField&)}

getFieldadr, 7:: f) = memValuéieldAdr(adr, ¢:: f), typet:: f))

Writing to memory is refined recursively together witBT6IELD along the given struct
type:

WRITEMEM(adr, 7, val) =
if + € SimpleType&) RefTypehen mentadr) := val
elseift € StructTypehen
forall f € instanceField&) do SETFIELD (adr, f, val(f))

SETFIELD(adr, ¢:: f, val) = WRITEMEM(fieldAdr(adr, ¢:: f), typet:: f), val)

The notion ofAddressPofrom Cii¢ is refined to include also Ivalue nodesSifuctTypeso
that address positions are of the following fomaf [, out [, O++, O-- , [ op= exp
0. £, 0. m(args) .

AddressPog) <= FirstChild(a) A
label(up(®)) € {ref ,out ,++,-- } v label(up(x)) € Aopv
(label(up(a)) =". " A o € Vexpa type(o) € StructTypg

YIELDUPBOX creates a box for a given value of a given type and returns its reference. The
run-time type of a reference to a boxed value of struct tyjgedefined to be (the value
type)t of the value. There is no need to introduce special reference types for boxed values.
If type(exp is a value type that implements the interfacthentypeexp<I and the value
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can be boxed usind 7) exp or ‘expas i'.

YIELDUPBOX(¢, val) = let ref = new(Ref) and adr = new(Adr, ¢) in
runTimeTypéef) :=¢
valueAdrref) := adr
WRITEMEM(adr, ¢, val)
YIELDUP(ref)

The struct value is copied in both cases, when it is boxed and when it is un-boxed.

4.2.2. ASM function new
We now justify in the context of the basic parallel execution mechanism of ASM rules
the sequentiality which is used in the following macros:

let adr = new(Adr, 7) in P
let ref = new(Ref, T) in P
let ref = newRef, [[1,...,0,],T)Iin P

In the context of the machinexBEcCsHARPthis comes up to specify an abstract memory
management. In fadet adr = new(Adr, T) in P stands for the sequential execution of
a new address allocation (which uses the ASM constrapbrt to provide a completely
fresh element) followed bfp:

let adr = new(Adr, 7)) in P = (import adr do ALLOCADR(adr, T)) seq P

where the operataeqfor sequential execution of two ASMH, N is to be understood as
defined for turbo ASMs ifil4] (alternatively sel6, Chapter 4.1] namely as binding into
one overall ASM step the two steps of first executihgn the given state and thévin the
resulting state. Similariet ref = new(Ref, T) in P stands for the sequential execution
of address allocation for all instance fields of a given type followe&:by

let ref = newRef, T) in P =
import ref do
Ref(ref) := True
ALLOCFIELDS(ref, instanceFieldéT))
seq P

Similarly, we define the address allocation for elements af-dimensional array:

let ref = newRef, [[1,...,[;,],T)In P =
import ref do
Ref(ref) := True
forall x €[0..14 —1] x--- x[0..], —1] do
import adr do
elemAd(ref, o) := adr
ALLOCADR(adr, T)
seq P
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The two macros for allocation of addresses and fields can be recursively defined as follows,
relying again upon the definition of recursive turbo ASM#$1i] (or see alternativelf16,
Chapter 4.1.2)]

ALLOCADR(adr, T) =
Adr(adr) := True
if T e StructTypehen ALLOCFIELDS(adr, instanceFieldér))

ALLOCFIELDS(x, fs) =
forall f € fsimport adr do
fieldAdr(x, f) := adr
ALLOCADR(adr, type(f))

5. Refinement Gi¢ of Cip by exception handling

In this section we extendig with the exception handling mechanism df,@hich sep-
arates normal program code from exception handling code. To this purpose exceptions are
represented as objects of predefined system exception classes or of user-defined application
exception classes. Once created (thrown), these objects trigger an abruption of the normal
program execution to catch the exception—in case it is compatible with one of the excep-
tion classes appearing in the program in an enclosing try—catch—finally statement. Optional
finally statements are guaranteed to be executed independently of whether the try statement
completes normally or is abrupted.

5.1. Static semantics @fi¢

For the refinement of E=CCSHARP) by exceptions, as in the previous section it suffices
to add the new rules for exception handling and to extend the static semantics. The set of
statements is extended by throw and try—catch—finally statements satisfying the following
constraints:
Stm = ...|‘throw *Exp‘;’ | ‘throw "*;’
‘try ' Block{Catch [‘catch ' Block] [‘finally ' BlocK

Catch::= ‘catch '*(’ ClassTypdLoc] ‘) ' Block

e every try—catch—finally statement contains at leastaatteh clausegeneral catch clause
(i.e. of formcatch blockK), or finally block

noreturn statements are allowed in finally blocks,

abreak , continue ,orgoto statementis not allowed to jump out of a finally block,
athrow statement without expression is only allowed in catch blocks,

the exception classes irfGatchclause appear there in a non-decreasing type order, more
precisely, for every try—catch statement of the form.

try blockcatch ( E1 x1) blocks ...catch ( E, x,) block,

the following holdsi < j = E; AXE; (andE;<System.Exception ).
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In our model the sets of abruptions and type states have to be extended by exceptions. Due
to the presence dhrow statements without expression, a stack of references is needed to
record exceptions which are to be re-thrown.

Abr = ... | ExaRef), TypeState= ... | ExcRef), excStackList(Ref)

To simplify the exposition we assume that general catch clanagd? block are replaced
atcompile-time byc¢atch (Object  x ) blocKwith anew variablex. We also reduce try—
catch—finally statements to try—catch and try—finally statements as follows. Both reductions
can easily be shown to correctly express the ECMA specification:

try {
try TryBlock

catch ( E1 x1) CatchBlock

try TryBlock
catch ( E1 x1) CatchBlock

=

catch ( E, x,) CatchBlock

finally  FinallyBlock catch (- £y x) CatchBlock

} finally FinallyBlock

If a static constructor throws an exception, and no catch clauses exists to catch it, then

this exception is wrapped into BypelnitializationException by translating
static  T(){ BlockStatements into
static  T(){

try { BlockStatements
catch (Exception e){
throw new TypelnitializationException( T, e);

}
}

The reachability rules and the definite assignment constraints for a try-stateh try

tryBlock catch (  Ej x3) catchBlock...catch ( E, x,) catchBlock are:

o If reachabléstm), thenreachablétryBlock) andreachablécatchBlock) for everyi €
[1..n].

e If normal(tryBlock) or normal(catchBlock for at least onei € [1..n], then
normal(stm).

o beforgtryBlock) = beforgstm).

o beforgcatchBlock) = beforgstm) U {x;} for everyi € [1..n].

e after(stm = after(tryBlock) N (");_; after(catchBlock).

For a statemerdgtmof the formtry tryBlock finally finallyBlockthe rules and con-

straints are:

If reachabléstm), thenreachablétryBlock) andreachabléfinallyBlock).

If normal(tryBlock) andnormal(finallyBlock), thennormal(stm).

beforgtryBlock) = beforgstm).

beforefinallyBlock) = beforgstm).

after(stm) = after(tryBlock) U after(finallyBlock).
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5.2. Dynamic semantics f@t¢

The transition rules for EecCsHARPg are defined by adding two submachines to
EXECCSHARPy. The first one provides the rules for handling the exceptions which may
occur during the evaluation of expressions, the second one describes the meaning of the
new throw and try—catch—finally statements.

EXECCSHARPE =
EXECCSHARPp
EXECCSHARFEXPE
EXECCSHARPSTM g

5.2.1. Expression evaluation rules

EXECCSHARFEXPE contains rules for each of the numerous forms of run-time exceptions
defined in the subclasses Bf/stem.Exception . We give here seven characteristic
examples and group them for the ease of presentation into parallel submachines by the form
of expression they are related to, namely for arithmetical exceptions and for those related
to cast expressions, reference expressions or array expressions. The noarJef we
use is supposed to execute the ctitew new E() at the parent position, so that we
define the macro by invoking an internal methdatow E with that effect for each of the
exception classes used as parameter oAt Up.

EXECCSHARFEXPE = match contextpos
uop™val — if Checkedpos A Overflowuop val) then
FaiL Ur(OverflowException )
valy bop ®val, — if DivisionByZergbop, valy) then
FaiL Up(DivideByZeroException )
elseif DecimalOverflowbop, valy, valy) v
(Checkedpos A Overflow(bop, vali, valp))
then FaiL Up(OverflowException )
CASTEXCEPTIONS
NULL REFEXCEPTIONS
ARRAYEXCEPTIONS

FAILUP(E) = INVOKEMETHOD(ExcSupportThrow E, [ ])

CASTEXCEPTIONS= match contextpos
(t)>val —
if typa(pos € RefTypahen
if t+ € RefTypen val # Null A runTimeTypéval) 4r then

FaiL Up(InvalidCastException )
if + € ValueTypehen /I attempt to unbox
if val = Null then FaiL Up(NullReferenceException )
elseift # runTimeTypéval) then
FaiL Up(InvalidCastException )

if typapos € NumericTypen + € NumericTypen Checkedpos A
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Overflow(, val)
then FaiL Up(OverflowException )

The semantics of assignments as defined by the ECMA standard and formalized by the rule
NuLL REFEXCEPTIONSIS violated by a compiler optimization ii39] related to the timing
of theNull check for certain expressions, see the analyqi20h

NuULL REFEXCEPTIONS= match contextpos

>ref. t.f — if ref = Null then

FaiL Up(NullReferenceException )
ref. t.f =®val — if ref = Null then

FaiL Up(NullReferenceException )
ref. T::M(>vals — if ref = Null then

FaiLUp(NullReferenceException )

If the address of an array element is passed asfa or out argument to a method,

then the run-time element type of the array musebealto the parameter type that the
method expects. If an object is assigned to an array element, then the type of the object
must be asubtypeof run-time element type of the array (array covariance problem). In

both cases, if the condition is not satisfied, AamayTypeMismatchException is
thrown.
ARRAYEXCEPTIONS= match contextpos
new T[l1, ..., " L[ Ri] ---[ R] —
if 3i € [1..n](; < 0)then FaiLUpP(OverflowException )
ref[iq, ..., %i)] —
if ref = Null then FaiL Up(NullReferenceException )

elseifdk € [1..n] (ix < 0V dimLengthiref, k — 1) <i;) then
FaiL Up(IndexOutOfRangeException )

elseif RefOrOutArgup(pos) A typaup(pos) € RefTypen
elementTypeunTimeTypéef)) # typgup(pos)

then FAIL UP(Array TypeMismatchException )

ref[ i1, ..., i,] = ®val —

if ref = Null then FaiL Up(NullReferenceException )

elseif 3k € [1..n] (ix < 0V dimLengthiref, kK — 1) <i;) then
FaiL Ur(IndexOutOfRangeException )

elseif type(pos € RefTypen

runTimeTypéval) 4elementTyp@unTimeTypéref)) then
FaIlL Up(Array TypeMismatchException )

5.2.2. Statement execution rules

The statement execution submachine splits naturally into submachines for throw, try—
catch, try—finally statements and a rule for the propagation of an exception (from the
root position of a method body) to the method caller. To support a correct understand-
ing of the exception messages that are printed to the console we include into the rule for
throw statements the initialization of stack traces. The initialization of stack traces in Java
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and Ci is different. In Java, the stack trace is initialized with the complete trace up to
the main function once and for all when the exception object is created? theCstack

trace is initialized with the empty trace each time when the exception object is thrown
with throw and then augmented whenever the exception is propagated to a parent frame.
The semantics of the parameterléissow; instruction is explained in terms of the ex-
ception StaclexcStackWhen an exception is caught, it is pushed on top of the excep-
tion stack (which as explained above is needed to record exceptions which are to be re-
thrown). Whenever a catch block terminates (normally or abruptly) the topmost element
of the exception stack is deleted. No special rules are needed for general catch clauses
‘catch blocK in try—catch statements, due to their compile-time transformation men-
tioned above. The completeness of the try—finally rules is due to the constraints listed above,
which restrict the possibilities for exiting a finally block to normal completion or triggering

an exception.

EXECCSHARPSTM = match contextpos
throw exg — pos:= exp
throw ™ref; — if ref = Null then FaiLUP(NullReferenceException )
elselNITSTACK TRACE(ref, meth
YIELDUP(EXxc(ref))
throw; — YIELD(Exctop(excStack))

try blockcatch ( E x) stm... — pos:= block
try »Normcatch (  E x) stm... — YIELDUP(Norm)
try »Exdref) catch( E1 x;) stmy ... catch( E, x,) stm, —
if 3 €[1..n] runTimeTypéef)<E; then
let j = min{i € [1..n] | runTimeTypé&ef)<E;} in
pos:= stm
excStack= pushrref, excStack
WRITEMEM(locals(x ), object , ref)
elseYIELDUP(Exd(ref))
try ™abrcatch( Ej x;) stmy ... catch( E, x,) stm, — YIELDUP(abr)
try Exqref) ... catch( ...) ®res... —
{excStack= pop(excStack YIELDUP(res)}

try tryBlock finally finallyBlock — pos:= tryBlock
try »resfinally finallyBlock — pos:= finallyBlock
try resfinally >Norm — YIELDUP(res)
try resfinally > Exq(ref) — YIELDUP(Exc(ref))
Exdaref) — if pos= bodymeth A —Emptyframeg then
if StaticCtormeth then typeStat&ypemeth) := Exqref)
else APPENCSTACK TRACE(ref, meth(top(frames))
ExXITMETHOD(EXc(ref))

In case an exception happened in the static constructor of a type, its type state is set to
that exception to prevent its re-initialization and instead to re-throw the old exception
object. The refinement of the macmitiaLizE defined in G¢ re-throws the exception
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object of a type which had an exception in the static constructor, thus preventing its
re-initialization.2°

INITIALIZE (¢) =

if typeStatér) = Exqref) then YIELD (Exc(ref))

6. Refinement Cip of Ci¢ by delegates

In this section we extenditg by features which distinguishf@rom other languages, e.g.
Java. We start with delegates and then add further constructs whose semantics can be defined
mainly by reducing them via syntactical translations to the language model developed so
far: properties, indexers, overloaded operators, enumerators wifbrdseh  statement,
theusing statement, events and attributes. We use the model developed so far as ground
model (in the sense ¢8]) for Ci, thus providing a basis to justify the correctness (with
respect to the ECMA standaj@7]) of the “semantics of syntactic sugar” introduced in this
section to define the semantics for delegates, properties, etc.

6.1. Delegates

Delegate types in Care reference types that encapsulate a static or instance method with
a specific signature, with the intention of having delegates playing the role of type-safe
function pointers. A delegate tyg2is declared as follows:

delegate T D(S1x1, ..., Sy xn);

It represents the type of methods that takarguments of types, ..., S, and have re-
turn typeT. Delegate types appear as subtypeSyédtem.Delegate  and provide in
particular thecallbackfunctionality and asynchronous event handling. More precisely, the
characteristic ability of delegates is to call a list of multiple methods sequentially. This
feature is realized by means of emwocationList Ref — Delegaté U {Undef} with which
each delegate instance is equipped upon its creation. Each such list is a per instance im-
mutable, non-empty, ordered list of static methods or pairs of target objects and instance
methods. Upon invocation of a delegate instance with argunaegssthe methods of its
invocation list are called one after the other with these argunaegssreturning to the caller
of the delegate either theturn valueof the last list element or the firgixceptiona list
element has thrown during its execution, preventing the remaining list elements from being
invoked.

Therefore we introduce a new univeiBelegate= MethU (Ref x Meth). To express the
creation and use of new delegate expressions th&sptSexpare extended by additional

20 For modeling the implementation fldgeforefieldinitmentioned above this implies, as observed2], to
refine also the predical&iggerInit, used for invoking static or instance methods, namely to guarantee for a class
in exception state its initialization even if the class is marefbrefieldinit Triggerlnit(c) = (—Initialized(c) A
—beforefieldinitc)) v typeStatér) = Exdref).
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grammar rules as follows, using a new Beixpof delegate expressions:

Sexp:= ... | Exp( [Args])
Exp :=...|'new DelegateTypé(’ Dexp‘)’
Dexp ::= Meth| Type‘. ' Meth| Exp‘. ' Meth| Exp

A methodT :: M is calledcompatiblewith the delegate typP iff T::M andD have the same
return type and the same number of parameters with the same parameter types (including
ref ,out , params modifiers). The type constraints on the new expressions are spelt out
in [12].

We use the model¥=cCsHARPFSTM,, which includes a description of ther statement
of Ciiz, to express the sequentiality of the execution of delegate invocation list elements. In
fact the above delegate declaration can be translatefd $6woid in the following class:

sealed class D : System.Delegate {

public 7 Invoke( S1x1, ..., Sy xx) {

T result;

for (inti=0;i < this ._length() ; i++)

result = this._invoke(i, X1y oeny Xn);

return result;
}
private extern int _length();
private extern T _invoke(int i, S1x1, ..., Sy xn);

}

A delegate invocation expressieRy args) can be syntactically translated into a normal
method calexp D::Invoke( args) whereD is the type ofexp 2! It then suffices to refine
the ASM rule NVOKEEXTERN defined in the model E=CcCsHARFEXP to describe the
meaning of the methof::_invoke , which is to invoke théth element of the invocation
list on the given arguments, and analogously lehgth

INVOKEEXTERN(T ::M, vals) =
if T € DelegateTyp¢hen
if naméM) = _length then
DELEGATELENGTH(valg(0))
if namgM) = invoke then
INVOKEDELEGATE(vals(0), vals(1), drop(vals, 2))

DELEGATELENGTH(ref) =
Y IELDUP(length(invocationListref)))

INVOKEDELEGATE(ref, i, vals) =
match invocationListref) (i)

2ln [27, Section 10.4.7the members of a delegate are defined to be the members inherited from the class
System.Delegate . However neither .NET nor Rotor nor Mono do respect this stipulation since they add
further methods to those inherited. One such example is the metheoke we use here.
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T:M — INVOKESTATIC(T :: M, vals)
(target, T::M) — INVOKEINSTANCE(T :: M, target, vals)

Since there are no new statements appearing @e addition of the rule E=ECCSHARPp

to EXECCSHARPg consists in the following ASM subruled@CcCsHARPEXP,, which defines

the meaning of delegate instance creation. For a detailed analysis of the discrepancy we
exhibit here between the ECMA standard and the .NET implementatid2@ee

EXECCSHARFEXPp = match contextpos
new D(T:M) —
let d = new(Ref, D) in
runTimeTyp&l) := D
invocationListd) := [T::M]
YIELD(d)
new D(exp T::M) — pos:= exp
new D(>ref. T:M) —
if ref = Null then FaiL Up(NullReferenceException )
else letd = new(Ref, D) in
runTimeTyp&l) := D
invocationListd) := [(ref, T::M)]
YIELDUP(d)
new D(exp — pos:=exp
new D( >ref) —
if ref = Null then FaiL Up(NullReferenceException )
else letd = new(Ref, D) in
runTimeTyp&l) := D
invocationListd) := invocationListref) //ECMA 8§14.5.10.3
/I Microsoft .NET Framework:
/I invocationListd) := [(ref, D::Invoke )]
YIELDUP(d)

To be complete, one should add some rules which reflect the special character of delegate
invocation lists. As usual for lists, two invocation lists aal(==) iff they have the same

length and the elements of the lists are pairwise equal; they cemrbined concatenated

with ‘+") and sublists determined by a particular prefix and suffix condition caarheved

from them (with -’). To describe this specialization of list operations in our model it
suffices to refine the macraVOKEEXTERN by new rules for these operataperator+
operator- , operator==

INVOKEEXTERN(T ::M, vals) =

if T € DelegateTypé¢hen
if namé&M) = operator+ then
DELEGATECOMBINE(T, vals(0), vals(1))
if namgM) = operator-  then
DELEGATEREMOVE(T, vals(0), vals(1))
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if nam&M) = operator== then
DELEGATEEQUAL (vals(0), vals(1))

Since invocation lists are considered to be immutable, combination and removalreturn
delegate instances unless one of the argumenmtsllis . Thenull reference represents a
delegate instance with an empty invocation list.

DELEGATECOMBINE(D, r1, 12) =
if o = Null then YIELDUP(r2)
elseif ro = Null then YIELDUP(r1)
else letd = newRef, D) in
runTimeTypé&l) := D
invocationListd) := invocationListry) - invocationListry)
YIELDUP(d)

DELEGATEREMOVE(D, r1, 12) =
if 1 = Null then YIELDUP(Null)
elseif r, = Null then YIELDUP(r1)
else let/; = invocationListr1) and lo = invocationListry) in
if [1 = I» then YIELDUP(Null)
elseif Subword(l», [1) then let d = new(Ref, D) in
runTimeTypé&l) := D
invocationListd) := prefix(lz, 11) - suffixiz, I1)
YIELDUP(d)
elseYIELDUP(r1)

The notions oprefixandsuffixare defined here in terms of thest occurrence of a subword:
prefix(u, v) is the part ofv before the last occurrence ofn v andsuffixu, v) the part of
v after the last occurrence afin v.

DELEGATEEQUAL (11, 1) =
if ¢ = Null v ro = Null then YIELDUP(r1 = r)
else letl; = invocationListr1) and l» = invocationListr) in
YIELDUP(length(l1) = length(l2) A Vi < length(/y) (11(i) = I2(i)))

6.2. Properties, events and further feature<iip
In this section we add further language features pisose semantics can be easily

defined in terms of the model developed so far, essentially by simple syntactical reductions
which one can easily justify to formalize correctly the explanatiori& .

6.2.1. Properties
Collections of a read andr a write method for attributes of a class or struct are called
propertiesin Cf and declared in the following form (we skip the modifiers):

Type Identifief{’ ['get ’ BlocK] [‘set ’ Block] ‘}’
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By definition aread—writeproperty has ajet and aset accessor, aad-onlyproperty

has only aget accessor, arite-only property has only aet accessor. The identifier of

a propertyP of type T can be used like a field identifi@ except that it cannot be passed

asref orout argument. Furthermore, it is required that the body afed accessor

is the body of a method with return tygé that aset accessor has a value parameter
namedvalue of type T and that its body is the body of wid method. Using the
signatured” get_ P(); andvoid set_ P( T value); ,which are reserved forgetand

set accessors, the intended semantics of properties is reduced to the semantics of methods,
using the following syntactical reductions:

T P{ T get P(){ getAccessof
get{ getAccesso} void set P( T value){
set{ setAccessof setAccessor
} }
exp P — expget_ P() exp. P = exp; — exp.set_ P(exp);

The above translation comprises also expressions of thedgpm P op= ex, because
we can assume that these compound assignments are compiled=t@xp,, y = x.
get_ P() opexp, x.set_ P( y), y) with fresh local variables, y, using as auxiliary
operator the comma operator familiar fromy@++. This necessitates auxiliary rules for
going through sequences of expressions of the following form:

(exp ...) — pOS:= exp
(valy, ..., »val,) — YIELDUP(val,)
(...”val, exp...) — pos:=exp

6.2.2. Indexers

Indexers can be used like array elements except that they cannot caftaior out
parameters and their elements cannot be passefl asrout arguments. They are declared
in a class or struct type as follows (we skip the modifiers):

Type‘this ‘[’ [Paramg ‘] "*{’ ['get ' Block] [‘set ' BlocK ‘}’

Analogously to the constraints for properties, for an indexer of Tvéh parameterp, the

body of aget accessor is the body of a method with parameiersd return typd, the body

ofaset accessoristhe body of@id method with parametepsand an implicit value pa-
rameter namedalue of typeT. A base class indexer can be accessdubse| exp$ . Us-

ing the signature¥ get_Item( paramg andvoid set_Item(  params T value) |,

which are reserved for get and set accessors, the intended semantics of indexers is re-
duced to the semantics of arrays and methods via the following compile-time transla-
tion (and corresponding operator expression translation as explained

22\wjithout knowing whether it is accessed directly or whether an accessor method is being called.



E. Borger et al. / Theoretical Computer Sciemge( i) ii—in 41

for properties):

T this| param§ { T get_ltem( paramg{ getAccessof
get{ getAccesso} void set_Item( params T value) {
set{ setAccessof = setAccessor

} }

Events. Events can be declared inftdike fields as follows: in the formévent ’
DelegateType Identifiér, ' (we omit the modifiers), or like properties, in the form

‘event ' DelegateType Identifief ' ‘ add’ Block‘remove ' Block*} .

Outside the type that contains the declaration, an eXeain only be used as the left-hand
operand oft= and-= in expressions += expandX -= expof typevoid ; within the
type that contains the declaration, field-like events can be used like fields of delegate types.
The accessors of property-like events have to be bodiesidf methods with an implicit
parametewvalue of DelegateType

The semantics of events ini@llows the Publishy Subscribegpattern. A class publishes
an event it can raise, so that any number of classes can subscribe to that event. When the
event is actually raised, each subscriber is notified that the event has occurred, namely by
calling a delegate whose invocation list is executed with the sender object and the event
data as its arguments. This idea is realized as follows.eMeat sendeclass that raises
an event name has the membegvent X EventHandler  X; where the delegate
typeX_ EventHandler for the eventis declared as follows (with two arguments, the first
one for the publisher and the second one for the event information object, which must be
derived from the clas&ventArgs ):

delegate void X _EventHandler(object sender X_EventArgs e);

To consume the event, tiegent receivedeclares an event-handling methedceive_ X
with the same signature as the event delegate:

void Receive_  X(object sender X EventArgs e){ ...}

To registerthe event handler, the event receiver has to ad®#eeive_ X method to the
eventX of the event sender object:

X += new X_EventHandler(this.Receive__ X);

The event sendeaisesthe event by invoking the invocation list #fwith the sender object
and the event data, e.g.

void On_ X( X_EventArgs ¢){if( X !=null) X(this, e);}

It suffices to assign a meaning to the signatweisl add_ X ( D value) andvoid
remove_ X( D value) , which are reserved for every evexiof delegate typ®. This
is done by the following translation of field-like events, anticipatingltek statement
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of Ci which is explained if35]. 23

class C{
private D __X;
void add_ X ( D value) {
lock (this) { _ X=__ X +value;}

void remove_ X( D value) {
lock (this) { _ _ X =__X-value;}
}
}

6.2.3. Further constructs

Similar syntactical reductions to those given above can be used to define the semantics
of overloaded standard mathematical operators and user-defined conversions, of enumer-
ation related statementforeach ( 7 x in exp stm, of using statementsusing
( resource) stmi, of parameter arrays and of attributes.

7. Refinement G, by pointers in unsafe code

In this section we add the feature§ Gffers for using pointers (coming with address-
of and dereferencing operato&, ‘ *’, * -> ' together with pointer arithmetic) to directly
work on memory addresses, bypassing the type checking by the compiler—hence the name
‘unsafe 'code blocks. Java has no such unsafe extension. The extension includes a mech-
anism calledpinning of objects to prevent the runtime during the execution dbeed
statement to manage via the garbage collector memory one wants to address directly. Code
for which (de-) allocation is not controlled by the runtime is callgadnanagedAs an al-
ternative to pinning, data of unmanaged type can alsstaekalloc  ‘ated, instead of
using the heap.

The refinement consists, besides some new rules, mainly in a definition wfetimery
function in terms of byte sequences. This is a typical data refinement, using an encoding of
simple types and a corresponding refinement of the funstiarctField

7.1. Signature refinement f@t;,

We refineTypeby adding pointer types to value and reference types:
Type = ValueTypg RefTyped PointerType
PointerType::= UnmanagedTyp&*’ | ‘void '**’

whereunmanagedypes are types which are not managed arahagedypes are recur-
sively defined as (a) reference types or (b) struct types that contain a field of a managed type

231fone prefers to be independent of the thread modet ne can consider lock statemelutsk ( exp stm
translated for single-thread execution pPbject o = exg stm} (with a fresh variable), which is then
refined in G for the multiple thread execution model.
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Table 6

Type constraints for unsafe expressions

Expression Constraints Expression type
sizeof( 1) t unmanaged type int

*e typele) = T*, T + void T

&v v a fixed variable T*, whereT = typgv)
e->m typele) = T*, T # void type(T ::m)

e[ i] typele) = T*, T # void , type(i) integral T

or a pointer to a managed type. The subtype relation is extended to pointer types such that
A<T* xvoid* . ExpandVexpare extended by address-of and dereferencing expressions
and expressions to denote the values of a new function indicatingittenf 'unman-

aged typesStmis extended to reflectunsafe ' code blocks, fixed ' statements and
‘stackalloc  ‘ation of arrays. unsafe ’can also appear as modifier for classes, structs,
interfaces, delegates as well as for fields, methods, properties, indexers, operators, events,
constructors, destructors.

Exp = ...| ‘& Vexp| Exp‘->" Meth( [Args]) | Exp‘->" Field
| ‘sizeof ‘(' UnmanagedTyp®'’

Vexp ::= ... | "*" Exp
Stm := ... |‘unsafe 'Block| ‘fixed '‘(’ PointerType Loc Exp')’ Stm
Bstm::= ... | PointerType Loc¢=’

‘stackalloc ' UnmanagedTypH ' Exp‘]’*;’

In the following expressions, the basic arithmetical operators are used for pointer increment
and decrement, pointer addition and subtraction, pointer comparison, and pointer conversion
(wherep andq are of a pointer typa,is of integer type):

o ttp, - p,ptt,p- ,ptiitp,p-i,p-qp==q,p'= q,p<q,p<=gq,

P>q,p>=¢q
o (T%) i,(T*) p,(int) p,(uint) p,(long) p,(ulong) p
On the types of the new expressions the constraints in Badnle imposed. We assume the
dereferencing and member access operaterm to be translated t¢* ¢). m, similarly
e[i] to*( e+1iQ).

For statements the following type constraints in Tabéee assumed. A variable is called
moveablgby the garbage collector) iff it is not a fixed variable. Fixed variables are (by
recursive definition): local variables, value parameteexpfor expof pointer type, and
instance field expressions f if v is a fixed variable of struct typ€ andf is an instance
field of T.

The local variablep in the fixed statement is calledpnnedlocal variable. A pinned
local variable is a read-only variable. It is not allowed to assign a new value to it in the body
of the fixed statement.

The principal refinement in the ASM extensioxEECSHARP, for Cif is that of the
menory together with its operators, where the setSapleValus is replaced byBytes



44 E. Borger et al. / Theoretical Computer Sciemg(1111) ii—iii

Table 7
Type constraints for unsafe statements

Statement Constraints
T* p = stackalloc TT exd; type(exp = int , 7 unmanaged
fixed (char* p =exp stm typ€exp = string , p read-only instm
fixed ( T* p=exp stm typeéexp = T[ R] , T unmanaged,
p read-only instm
fixed ( T* p=&vexp stm typévexp = T, T unmanaged,

vexpa moveable variable,
p read-only instm

(8-bit strings), using non-negative integers as memory addresdes=(N):
memAdr — ByteU RefU {Undef}

The partial functions tencode(resp.decodé values of a given simple typ€ by byte
sequences, of a length (number of bytes) dependirgiz@®f(T'), satisfy for valueval the
equations

decodéT, encodéval)) = val and lengthiencodéval)) = sizeOf(T).

For every pointer typ&* holdssizeOf(T* ) = sizeOf(void* ).

A functionfieldOffset UnmanagedStructTypeField — N is used to describe the layout
of unmanaged structs. It has to satisfy the following constraint for every unmanaged struct
typeT and instance fielflof T (overlapping fields are allowed infg):

fieldOffsetT, f) + sizeOf(type( f)) < sizeOf(T)

We assume that #dr is an address allocated usingw(Adr, T') for struct typeT, then for
every instance fielflof T the equatioriieldAdr(adr, f) = adr + fieldOffset’, f) holds.

To determine the layout of arrays with unmanaged element type we stipulate the following
refinement of the functioelemAdrwhich reflects that array elements are stored such that
the indices of the right most dimension are increased first, then the next left dimension,
and so on. ForunTimeTypéef) = T[ dim(n)] , whereT is an unmanaged type aid=
dimLengthiref, i — 1) fori € [1..n], we assume the following:

elemAdcref, [i1, io, ..., iy]) =
elemAdcref, [0,...,0) + (... (i1 -l +i2) - I3+ ...+ i,) - SizeONT)

7.2. Transition rule refinement for unsafe code

Besides the rules below which define the semantics of the new expressions and statements,
to be added to EECCSHARPp, we have to data refine the notions of reading from and writing
to memory for values of unmanaged type.

memValuéadr, 1) =
if + € RefTypehen mentadr)
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elseift € UnmanagedTypthen

[memadr +i) | i € [0..sizeOf(r) — 1] |
elseift € StructTypehen

{f — getFieldadr, f) | f € instanceField&)}

getField(adr, ¢:: f) = memValuéieldAdr(adr, ¢:: 1), typet:: f))

WRITEMEM(adr, , val) =
if ¢+ € RefTypehen mentfadr) := val
elseif t € UnmanagedTypthen
forall i € [0..sizeOf(r) — 1] do mentadr + i) := val(i)
elseifr € StructTypehen
forall f € instanceField&) do SETFIELD (adr, f, val(f))

SETFIELD (adr, ¢:: f, val) = WRITEMEM(fieldAdr(adr, ¢:: f), typet:: f), val)

Values of unmanaged struct types are directly represented as sequences of bytes. Hence, the
functionstructFieldhas to be refined to extract a subsequence in case of unmanaged struct

types:

structFieldval, T, f) =
if T € ManagedTyp¢hen val(f)
else letn = fieldOffset7, f) in [val(i) | n<i < n + sizeOftypa f))]

In the rules for KECCSHARFEXPy we have& [ as additional address position. We follow
the implementation in Rotor and .NET in formulating tkell check to prevent writing to
null addresses; the ECMA standard describes this check as optional.

EXECCSHARFEXPy = match contex{pos
sizeof( T) — YIELD(SizeOf(T))
&exp — pos:=exp
& adr — YIELDUP(adr)
*exp — pos:= exp
*»adr — if adr = Null then // null pointer check optional
FaiL Up(NullReferenceException )
elseY IELDUPINDIRECT(adr)
*exp = exp — pos:= exp
*>adr = exp, — pos:= exp,
*adr ="val — if adr = Null then // null pointer check optional
FaiL Up(NullReferenceException )
else
WRITEMEM(adr, typepos), val)
YIELDUP(val)

The rules for pointer arithmetic can be summarized as follows:
Apply(+(T*,int ), adr,i) = adr +i - sizeOf(T)

Apply(+(int , T*),i,adr) = adr + i - sizeOf(T)
Apply(- (T*, T*), adry, adrp) = (adr; — adry)/sizeOf(T)
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Conver{(T*, adr) = adr = Conver{sS, adr)
for S € {int , uint , long , ulong }
Conver(T*,i) =i

In the execution of the stackalloc statement we assumeévaadr, 7, i) allocates con-
secutive chunks of addresses of Sz=Of(T) which are later de-allocated on method exit
in FREELOCALS.

EXECCSHARPSTMy = match contextpos
unsafe block — pos:= block
unsafe »Norm — YIELDUP(Norm)

T* loc = stackalloc T[exd; — pos:=exp

T* loc = stackalloc T[”i]; — letadr=newAdr, T,i)in
WRITEMEM(locals(loc), T*, adr)
YIELDUP(Norm)

The run-time execution of fixed statements can be explained by syntactical transformations:

Statement Run-time execution

fixed (char* p =exp strﬂ{ char* p; p=Cstring(exp; stm}

fixed( T* p=exp stm |{ T* p; p=&exd0]; stm}

fixed( T* p=_&vexp stm |{ T* p; p=&vexp stm}

In the first case, it is assumed tl@2dtring(s) is an internal function that returns the address
of the first element of a C-style null-terminated character array representation of the string
s. How it is related to the original representation of the string is not specifigg¥in

8. Related work and conclusion

One of our referees would like to see a critical assessment of the ASM method we used
for this work and a comparison to alternative approaches. Some justification of the kind
from the perspective of semantic methods for programming languages has been ffiyen in
Section 4] containing concrete illustrations of and references to the numerous and earlier
competing proposals. This was at a time when ASMs were applied for the first time to
(successfully) specify an industrial language standard, namely the 1ISO Prolog standard
[11]. A decade later, a broader comparison of the then well-developed ASM method with
respect to other system design and analysis frameworks has been proyijéH iowever,

a systematic, comprehensive and authoritative evaluation of the multitude of system design
and analysis proposals in the literature remains a highly desirable and challenging task
to be accomplished, even if limited to the use of the major so-called formal methods for
the development and investigation of programming languages and their implementations.
From the perspective of practical system design and analysis some comparative studies of
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this kind have been published, see ¢1g17,28](the interested reader may also consult
the corresponding ASM-based work 4,13,26). For work centered around Java and
the JVM the reader finds if2] a collection of formal-method approaches to language
specification and analysif24] contains an excellent, detailed and at the time complete
review of the huge literature on the subject (including an evaluation of the ASM-based
JavaJVM investigations), with a focus on safety issues and their impact on smart cards.
We cannot perform here a similar analysis for work ahdE other major programming
languages. This explains why the references in this paper stick tn€mentation from
ECMA and Microsoft and to some ASM work we have built upon directly.

For the work presented in this paper we set ourselves a more modest though not completely
trivial major goal, namely to test whether the method developf&Eifor the definition and
a proven to be correct implementation of a real-life programming language like Java scales
naturally to the somewhat richer and more complexitis up to the reader to judge whether
this ASM reuse case study for a real-life complex model succeeded. For the formalization of
other programming languages something can also be learnt directly from the formalization
of the semantics of fDworked out here. For example, how to “divide and conquer” the static
and the dynamic semantics of a language, how to separate the description of conceptually
independent programming constructs by dividing them into sublanguages, how to unify
and streamline the formalization of similar constructs by appropriate parameterizations
(which means abstractions), how to model and evaluate variations of specific features (e.g.
expression evaluation, parameter passing mechanism, class initialization, etc.) by varying
macros, rules an@r domains together with their operations, how to extend within a single
framework the model for a language core by a form of bootstrapping (including in particular
syntactical translations) to a model for the entire language, etc.

There are several by-products of the work presented here. Through the ASM-model-
oriented analysis of the ECMA standard fof @e found several bugs and gaps in the
formulation of the standard and in its .NET implementation as well as some incoherences
between the two, as documented in detai2id] in terms of our ASM model for €& Another
by-product of the high-level modular interpreter defined here is the support it provides to
teachers of @, in particular if they want to shed light on certain subtle language features
which are not clarified by the ECMA documents. In the forthcoming pH&8me are going
to work out a concrete comparison of the two models foa@d for Java, which will allow
us to formulate in a precise technical manner where and in which respect the two languages
differ among each other and from other programming languages—methodologically, se-
mantically and pragmatically. As a specific part of this reuse-case-study the second author
is investigating how the main new features df £0 can be modeled by appropriate ex-
tensions of the ASM model developed here fdir @ particular generic types (parametric
polymorphism), anonymous methods and iterators. Last but not least, withiaupo@el
and its extension to threads [B5] we have laid the ground for a mathematical analysis
and possibly mechanical verification of interesting properties of the language and its im-
plementation, like type safet§# compiler correctness and completeness, correctness of

24Fora fragment of Microsoft’s Intermediate Language, which is executed by Microsoft's Common Language
Runtime, a type safety proof has been giver{28], based upon Syme’s meth¢88] for writing functional
specifications which can be subject to theorem proving in HOL.
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(a mathematical model to be developed for) garbage collection, security, etc. For the cor-
rectness of the definite assignment analysis performed byca@piler, we may refer the
interested reader {@1]. We hope somebody will feel challenged to use our model for pre-
cisely formulating and proving such theorems fdr &hd to build a corresponding model

for Microsoft's Common Language Runtime together with a compilation scheme fibom C
to IL code, applying to our model the powerful ASM refinement techni@jelong the

lines shown in the ASM-based Ja\d&/M study in[36].

The questions asked by our referees lead us to mention another practical and industrially
viable use that can be made of a modeling and analysis activity as the one reported in this
paper, except if the extreme time pressure usually imposed on developers to produce exe-
cutable code from incomplete verbal specifications (mostly formulated in natural language)
prevents them from atleast once trying outa more reliable option. Here is a concrete example
what could have been done. On September 27, 2000, the penultimate day of his sabbatical
stay with Microsoft Research in Redmond, in a seminar talk to representatives of the C
development team, the first author suggested to use the method, at the time formulated and
presented in terms of Jau@&/M for publication in what became the Jbof86], for the
following five fundamental activities in relation to the at-the-time ongoing development of
what became known as thet Gnguage with the underlying CLR virtual machine:

e defining an ASM model aexecutable specification of critical language construmts
layers (if not of the entire language) and of the mapping to IL code,

e generating test casder the implementing code from the ASM model,

e using the ASM model asracle for test evaluationand for comparing model test runs

with code test runs,

e using the ASM model amternal documentatioffor future language extensions and for
relating other .NET languages td Gn particular those which are equipped already with

an ASM model of their semantics,

e using the ASM model alsasis for writing innovative handbooksr users and for main-
tenance professionals, where the innovative character derives from being (a) accurate yet
simple and easy to understand, (b) complete and detailed yet succinct.
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