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Abstract. Deductive database technology represents an important step
towards the goal of developing highly-declarative database programming
languages. In order to make deductive databases a practical technology,
deductive rules have to be extended to provide a dynamic behavior. In
particular, current applications require not only a support for updates
and transactions but also the ability to automatically react to the occur-
rence of particular events. This is possible by integrating typical deduc-
tive rules, whose execution is user-dependent, with active rules, whose
execution is event-dependent. Current solutions to this problem are not
completely satisfactory. In particular, they often lack a clear semantics,
guaranteeing termination, confluence and efficient evaluation. The aim of
this paper is to propose a new language for integrating active rules, de-
ductive rules and updates in a uniform logical context. The language we
propose is based on the U-Datalog language [9], and extends it with sup-
port for active rules, modeled according to the PARK semantics [23]. The
resulting language allows the representation of several dynamic aspects,
such as transaction execution, reactive behavior and update propagation,
in a uniform logical framework, admitting a clear and flexible semantics.

1 Introduction

It is today well recognized that the use of high-level, declarative languages greatly
reduces the application development time. Deductive database technology rep-
resents an important step towards the goal of developing highly-declarative
database programming languages. An important difference that characterizes
a deductive database system with respect to a relational one is that the former
stores not only data, but also rules, that allow additional information to be de-
rived from the data stored into the database. Moreover, a deductive database sys-
tem offers a uniform, declarative paradigm, based on formal logic, for the static
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management of the database, providing more powerful languages for defining
data, rules, integrity constraints, and for expressing queries.

In order to make deductive databases a practical technology, their formal
foundations have to be extended to deal with dynamic aspects, proper of any
real database system. Dynamicity concerns at least two different topics:

– An update and a transaction language should be provided and typical atom-
icity, consistency, isolation, and durability (ACID) properties have to be
guaranteed [24].
This requirement has led to the definition of several languages integrating
logic and updates [1,2,9,10,15,16,31,32,35]. In general, all those proposals
are based on including special atoms denoting updates in (typically Data-
log) rules. The proposed approaches differ for several aspects, such as the
semantics assigned to the resulting language (declarative vs. operational),
the evaluation techniques, the update position (head vs. body of the rules),
the ability to model non-determinism and parallelism, the conflict resolution
policy, and the ability to model transactions.

– Consistency of the database has to be guaranteed.
This is possible by specifying appropriate integrity constraints, to be checked
after any database change. In a more advanced setting, one could ask that a
semantic-aware database should be able to react correctly to changes to the
data it contains, by accordingly updating other data, in order to maintain
consistency. Besides maintaining integrity constraints, these capabilities are
desirable in order to automatize common procedures (e.g., having an order
shipped when the stock is low, or applying a discount when the stock is too
high). This need has led to the design of active databases, in which events
of various kinds (e.g., a query, an update) may cause the firing of so-called
active rules.

Many proposals for using active rules in databases have appeared, both com-
mercial [3,4,19,26,36] and academic [11,14,18,21,25,30,33,37,38,40,41,42] (the lat-
ter usually being more flexible than the former). In order to assign a clear
semantics to active rules, several approaches have been proposed to integrate
active rules in a deductive framework. In assigning a semantics to these active-
deductive languages, two main approaches emerged. The first approach is based
on unifying the different paradigms under a common semantics (often by using
compilative techniques) [13,29,34,39,43]. The second one is based on integrating
specific, different semantics [20,22]. Current solutions are however not completely
satisfactory. Indeed, some of the proposed approaches do not guarantee termi-
nation, some others do not guarantee confluence; moreover, most languages do
not have polynomial complexity. All these characteristics are fundamental in
order to efficiently execute user and system requests as well as to analyze the
rule behavior. The price to pay for such missing requirements is a more complex
language semantics and, when dealing with a large number of rules, a significant
difficulty in predicting their behavior at run-time and therefore in performing
useful compile-time optimization.
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The aim of this paper is to propose a new language for integrating active
rules, deductive rules and updates in a uniform logical context. The language we
propose is based on the U-Datalog language [9], and extends it with support for
active rules, in the style of the PARK semantics [23].

U-Datalog has been introduced with the aim of providing a set-oriented logi-
cal update language, guaranteeing update parallelism in the context of a Datalog-
like language. In U-Datalog, update atoms appear in bodies of Datalog rules.
The execution of a goal (also called a transaction) in U-Datalog is based on a
deferred semantics, by which several updates are generated from predicate eval-
uation, but not executed; rather, they are collected and are executed only at
the end of the query-answering process. In U-Datalog, updates are expressed by
using constraints. For example, +p(a) states that in the new state p(a) must be
true whereas −p(a) states that in the new state p(a) must be false. Each atom
solution generates a set of updates.

The deferred semantics of U-Datalog permits a uniform integration of U-
Datalog rules with active rules, logically modeled and interpreted according to
the PARK semantics.

The PARK semantics has been designed with the intent of overcoming the
limitations of most previously defined semantics for active rules. In particular,
given a set of ECA (Event-Condition-Action) rules, i.e. rules of the form “ON
event IF condition THEN action”, the PARK semantics satisfies several proper-
ties. First of all, it is non ambiguous, i.e., it always guarantees confluence of the
execution. Moreover, it is flexible with respect to conflict resolution. A conflict
is a situation where two or more active rules can be fired and one of these rules
requests the insertion of an atom a in the database, whereas at least one of the
others requests the deletion of a from the database. A conflict resolution policy
is a method to determine which actions should be executed in presence of a
conflict and which others should be suppressed. Under the PARK semantics, the
conflict resolution policy can be chosen according to specific application require-
ments. A fixpoint semantics is used to determine the result of the application
of a set of active rules. The fixpoint semantics has been chosen because it has a
clear mathematical foundation and can be directly implemented. The proposed
semantics guarantees the termination of the evaluation process. As it has been
pointed out in [23], all other proposed semantics fail to satisfy these important
requirements.

The integration of active rules in U-Datalog results in a new language that
allows several dynamic aspects to be represented, such as transaction execution,
reactive behavior and more specifically update propagation, in a uniform logical
framework. The semantics we propose for active rules differs from the semantics
of most other proposals in that, as the PARK semantics on which it is based,
it guarantees termination and polynomial complexity (since the PARK seman-
tics for active rules as well as the U-Datalog semantics guarantee polynomial
complexity [7,23]). The use of the PARK semantics allows the system to handle
updates generated by deductive rules and updates generated by active rules in
a uniform way. For example, with respect to U-Datalog [9], there is no need to
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define a priori the behavior to be taken when conflicts arise (whereas U-Datalog
always reacts to conflicts by aborting the transaction). Thus, our approach can
also be seen as an extension of U-Datalog to deal with multiple policies for con-
flict resolution. As far as we know, no other approach of this kind has been
proposed yet in the context of deductive databases.

Active rules and conflict resolution policies address two different but related
problems. In fact, active rules provide a means for expressing integrity constraints
in a simple, centralized way. On the other hand, conflict resolution policies pro-
vide a decision mechanism to handle situations where conflicting actions are
requested.

The paper is organized as follows. In Section 2, the syntax and the semantics
of U-Datalog are informally introduced, together with the basic ideas underlying
the introduction of active rules in U-Datalog. The syntax of the new language,
called Active-U-Datalog, is formally introduced in Section 3 whereas its seman-
tics is described in Section 4. Finally, Section 5 presents some conclusions and
outlines future work.

2 Overview of U-Datalog and Active-U-Datalog

In this section, we informally present the basic notions of U-Datalog and Active-
U-Datalog. We refer the reader to [9] for a complete description of U-Datalog.
Moreover, we assume that the reader is familiar with the basic logic programming
concepts [28].

A U-Datalog program (or database) consists of an extensional database
(EDB), that is a set of ground atoms, and an intensional database (IDB), that
is a set of rules of the following form:

H ← U1, . . . , Ui, Bi+1, . . . , Bn. n ≥ 1

where Uj , j = 1, ..., i, are update atoms and Bk, k = i + 1, ..., n, are atoms, in
the usual logic programming sense. An update atom is an atom preceded by
the symbol +, to denote an insertion, or by the symbol −, to denote a deletion.
Predicates defined in the extensional database and predicates defined in the
intensional database are disjoint.

A query is a rule with no head. Since, as we will see, U-Datalog queries may
generate updates, a U-Datalog query is also called simple transaction. A complex
transaction is a sequence of (simple) transactions, denoted by T1; . . . ; Tn.

For simplicity, it is assumed that U-Datalog databases are safe, that is all its
rules are safe. A rule is safe if each variable in the head belongs to a non-update
atom in the body. Often this condition is relaxed, assuming that the rule is safe
with respect to a query; in this case, it should be safe when the head is unified
with constants present in the query.
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Example 1. Consider the following U-Datalog program:

EDB: r(a). v(a,b).

IDB: p(X) ← r(X),-r(X).
q(X) ← p(X),+v(X,X).
s(X) ← +r(X).
s(X) ← p(X).

The extensional database contains a fact for each of the extensional predicates
r and v; the intensional database defines three intensional predicates, p, q and s.
Rules for p, q and the last rule for s are safe; on the contrary, the first rule for s is
not. But if we consider the transaction T = s(b), then the database is safe with
respect to T . Indeed, by evaluating T , all variables contained in update atoms
appearing in the body of rules defining s are bound by the constant present in
T . 3

The semantics of U-Datalog is essentially given in three steps: in the first
one, the marking phase, a set of solutions is generated. Each solution contains
a set of bindings and a consistent set of updates. A set of updates is consistent
if it does not require both the insertion and the deletion of the same fact. The
union of the updates collected in all solutions returned by the marking phase are
executed only in the update phase, if they are consistent. If the set of updates is
not consistent, the transaction is aborted and all the updates are discarded. The
third step is related to the execution of complex transactions. In this case, the
extensional database is updated after each transaction execution. If a transaction
aborts, the whole complex transaction aborts as well, to guarantee atomicity.

Example 2. Consider the U-Datalog database introduced in Example 1 and
the transaction T = q(X). When T is evaluated on IDB ∪ EDB, it computes
the binding X = a and collects the updates +v(a, a), −r(a). Since the re-
quested updates are consistent, the new EDB obtained by executing them is
EDB = {v(a, a), v(a, b)}. If we evaluate the transaction T = q(X), s(X) then
we obtain two solutions: one is exactly the previous one, the other has binding
X = a and collected updates +v(a, a), −r(a), +r(a). Since the set of updates
is not consistent, this solution is not returned to the user. Now consider the
transaction T = s(a). When evaluated on IDB ∪ EDB, it returns two solutions,
both containing an empty set of bindings. The first solution generates the update
+r(a) whereas the second solution generates the update −r(a). Each solution
contains a consistent set of updates. However, the union of such sets of updates
is not consistent and therefore the transaction is aborted. 3

In integrating active rules in U-Datalog, we extend its syntax and semantics
in a conservative way. In doing so, U-Datalog programs are augmented with a set
of active (Event-Condition-Action) rules. The obtained language is called Active-
U-Datalog. In this paper, we consider as events only updates, but the extension
to other kind of events (temporal, system-defined. . . ) is not difficult. Conditions
are actually queries on the deductive part of the program, and are evaluated
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with regard to the intermediate state of the computation. This is needed to
allow active rules to react to the current (possibly inconsistent) state and take
appropriate actions to assure desired properties of the final state.

Conflict resolution is handled by a parametric conflict resolution policy; this
assures that no conflicting updates will still be present during the update of the
database. This approach allows us not to abort a transaction in case of conflicts
(as happens in U-Datalog): we try to solve conflicts, and in the worst case,
i.e., when the computation generates non-ground updates, we only discard the
updates without aborting the transaction (see Section 4.3).

Our actions are sets of updates. We allow for more than one update in an
action so that the database designer can express atomic sets of updates (we
could call them sub-transactions), with the intended meaning that, if the conflict
resolution policy forbids one of the updates in the set, none of the updates in
the set will be requested.

Example 3. Consider again the U-Datalog database introduced in Example 1.
In Active-U-Datalog, we may maintain the rules of that database and introduce
some active rules. For example, the active rule that, if q(X) is true (condition)
and the fact r(X) is removed (event), then inserts the fact v(X, X) (action), can
be represented as follows:

−r(X), q(X)→ +v(X, X).

3

In the following sections, the syntax and the semantics of Active-U-Datalog
will be described in more details.

3 Syntax of Active-U-Datalog

We consider a fixed (Π, Σ, V )-language. The set Σ and V are respectively the set
of constant and variable symbols. The set of predicate symbols Π is partitioned
into three sets: the extensional predicate symbols Πe, the intensional predicate
symbols Π i and the update predicate symbols Πu, defined as Πu = {+p,−p |
p ∈ Πe}. We denote with (Π, Σ, V )-atom an atom whose predicate belongs to
Π and whose terms are in Σ ∪ V . Update atoms are extensional atoms prefixed
by +, to denote insertion, and by −, to denote deletion.

An Active-U-Datalog program can be seen as a U-Datalog program (EDB ∪
IDB) to which we have added a set of active rules AR. We call deductive part
the U-Datalog program and active part the set of active rules.

Definition 1 (Active-U-Datalog syntax). An Active-U-Datalog program
or database P = IDB ∪ EDB ∪ AR consists of an extensional database EDB,
of an intensional database IDB and of a set of active rules AR. The EDB, also
called state of the database, is a set of ground extensional atoms. The IDB is a
set of deductive rules of the form

H ← U1, . . . , Un, B1, . . . , Bm.
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where B1, . . . , Bm is the query part (Bj is a (Πi∪Πe, Σ, V )-atom, j = 1, ..., m),
U1, . . . , Un is the update part (Uj is a (Πu, Σ, V )-atom, j = 1, ..., n), and the
head H is a (Π i, Σ, V )-atom. The update and query part cannot be both empty.
The AR is a set of rules of the form

E1, . . . , En, B1, . . . , Bm → U1, . . . , Uk.

where E1, . . . , En is the event part (Ej is a (Πu, Σ, V )-atom, j = 1, ..., n),
B1, . . . , Bm is the condition part (Bj is a positive or negative1 (Πi ∪Πe, Σ, V )-
atom, j = 1, ..., m) and U1, . . . , Uk is the action part (Uj is a (Πu, Σ, V )-atom,
j = 1, ..., k) which cannot be empty. We require for active rules two safety con-
ditions: each variable occurring in a rule head should also occur in the body of
the same rule and each variable occurring in a negated literal in the rule body
must also occur in some positive literal in the rule body. 2

The intuitive meaning of a rule belonging to the IDB of an Active-U-Datalog
program is: “if B1, . . . , Bm are true then H is true and, as side effect, the updates
U1, . . . , Un are requested”. While intensional rules give deductive power to our
framework, active rules allow the system to autonomously react to the current
(possibly inconsistent) state and to take appropriate actions to assure desired
properties on the final state. The intuitive meaning of the active rules we use
in Definition 1 is: “if the events E1,. . . ,En occur and B1, . . . , Bm are true, then
execute actions U1, . . . , Uk”.

A simple transaction or query T is a deductive rule with no head and with a
non-empty query part; a complex transaction is a sequence of simple transactions
T1; . . . ; Tk.

It should be clear that a transaction provides different functions: the query
function, in that it returns a set of bindings, and the update function with
a transactional behavior [24]. As we will see in Section 4.3, the transactional
behavior ensures that all the updates are executed or, in case of ungroundness,
none of them is performed. We always assume that our rules are safe with respect
to a transaction.

Example 4. Let us consider the administrative database of a school. We want
to store information on the students and the exams they passed. We also want
that, when a student leaves the school, all related information is automatically
removed from the database.

The following Active-U-Datalog database models this situation:

EDB: student(mary). student(frank).

exam(engl). exam(phys).

passed(mary,phys).

IDB: pass(S,E) ← student(S), exam(E), +passed(S,E).

leave(S) ← student(S), −student(S).
AR: −student(S), passed(S,E) → −passed(S,E).

1 A negative atom is denoted by ¬p(t̃) and negation is understood as negation as
failure.
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The first deductive rule allows us to insert a fact passed(S,E) for each
student S who passes exam E. The second rule allows us to remove students
when they leave the school.

The intended meaning for the active rule is the following: whenever there
is an attempt to remove a student from the database, all the passed predicates
concerning him or her must be removed, too.

The formal semantics of this intended meaning is given in the next section.
3

4 Semantics of Active-U-Datalog

The semantics of an Active-U-Datalog program is given in three steps. In the
first step, we compute the model of the IDB given the initial EDB and collect
the set of bindings that satisfy the query and the requested updates. This step
corresponds to the marking phase in U-Datalog. However, if the result of this step
is a set of inconsistent updates, we do not abort as U-Datalog does; instead, we
solve the conflicting updates in the next step. In the second step, we compute
the semantics of the active part of the program, according to the model and
to the updates collected in the first step. The result of this step is the set of
updates requested either from the deductive and/or from the active part, in
which any conflict has been solved by a parametric policy. Finally, we describe
how the two semantics fit together and how we apply the computed updates to
the EDB, thus obtaining the new database state. The three steps (deductive part
semantics, active part semantics, updates incorporation) are repeated for every
simple transaction in a complex transaction. Hence, the state of the database
evolves after each simple transaction.

The observable properties of the transaction we want to model are the set
of bindings (the answer), the new database state and the indication of success
(commit/abort) of the transaction itself. Actually, our transactions always com-
mit because of the conflicting resolution policy of the active part, that solves any
inconsistency. Although our semantics never produces aborts by itself, we still
consider this as an observable property to account for implementation-related
aborts, e.g., hardware failures or space exhaustion on some media, and to stay
close to U-Datalog semantics.

4.1 Deductive Part Semantics

The semantics for the deductive part is given by defining a bottom-up operator
T analogous to the immediate consequence operator of standard logic program-
ming [28]. This operator is defined over an extended Herbrand Base CB contain-
ing constrained atoms of the form H ← U where H is a (Πi ∪Πe, Σ, V )-atom
and U is a set of updates. The meaning of a constrained atom H ← U is that
H is true, and its evaluation requests the updates in U .2 Since the language

2 As a shorthand, a constrained atom H ← is simply denoted by H itself.
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does not contain function symbols, the set CB is finite. In summary, the imme-
diate consequence operator of standard logic programming is extended to deal
with update atoms, which are “gathered” in the bodies of rules during query
evaluation.

Definition 2 (Immediate consequence operator). Let P be an Active-U-
Datalog program. We define the immediate consequence operator TP : ℘(CB)→
℘(CB) as follows:

TP (I) = {A←U | H←U1, . . . , Un, B1, . . . , Bm is a renamed apart clause of P
B′

r←U r ∈ I, 1 ≤ r ≤ m
θ = mgu ((B1, . . . , Bm), (B′

1, . . . , B
′
m))

A = Hθ
U = (U1, . . . , Un, U1, . . . , Um)θ3 }

where the function mgu returns an idempotent mgu. 2

Notice that the rules involved in this definition are only rules from the de-
ductive part because the head H is a (Πi ∪Πe, Σ, V )-atom.

Theorem 1 (Continuity). Given an Active-U-Datalog program P , the imme-
diate consequence operator TP (Definition 2) is a continuous function.

Proof. By definition, the operator TP is monotonic on the lattice (℘(CB),⊆) and
since ℘(CB) is finite, the monotonicity of a function is a sufficient condition for
its continuity. 2

The continuity of T allows the fixpoint semantics for the deductive part to be
defined as the least upper bound of the chain of the iterated applications of TP ,
starting from the empty set.

Definition 3 (Fixpoint semantics). Given an Active-U-Datalog program P ,
we define the fixpoint semantics F of P as follows:

F(P ) = T ω
P (∅)

where, as usual, T ω
P (∅) represents

⋃
n T n

P (∅). 2

Since the domain is finite, the least fixpoint is reached in a finite number of
steps [12].

Example 5. Let us consider the following Active-U-Datalog program P .

EDB: v(a,a). v(a,b). r(b).
IDB: p(X) ← q(X),+r(X).

q(X) ← v(X,X),-r(X).
q(X) ← r(X).

AR: -r(X),r(Y) → +v(X,Y)
-r(X),v(X,Y) → -v(X,Y)
-r(X),q(X) → +v(X,X)

3 We use (U1, . . . , Un, U1, . . . , Um)θ as a shorthand for {U1θ, . . . , Unθ}∪U1θ∪. . .∪Umθ.
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The least fixpoint is computed as follows:

T 0
P (∅) = ∅

T 1
P (∅) = {v(a, a), v(a, b), r(b)}

T 2
P (∅) = {v(a, a), v(a, b), r(b), q(b), q(a)← −r(a)}

T 3
P (∅) = {v(a, a), v(a, b), r(b), q(b), q(a)← −r(a), p(b)← +r(b),

p(a)← −r(a), +r(a)}

T 4
P (∅) = T 3

P (∅), so we reached the least fixpoint F(P ). 3

A set of updates U is consistent if it contains no opposite updates, i.e. if
+r(t̃) and −r(t̃) are not both in U .

It is worth remarking that the evaluation of an atom can lead to inconsistent
updates as shown in the previous example, where (for instance) the evaluation
of p(a) requests the updates −r(a), +r(a). Differing from [9], where inconsistent
updates are never introduced in the model, we include them and resolve the
conflicts during the active rules evaluation (Section 4.2).

The semantics of a simple transaction T with respect to an Active-U-Datalog
program P is defined by using the fixpoint operator defined above. As usual in
database systems, we give a default set-oriented semantics, that is, the query-
answering process computes a set of answers. Before formally introducing the
semantics, we give two auxiliary definitions:

Definition 4. Given a set of bindings b and a transaction T , we define

b|T = {(X = t) ∈ b | X occurs in T }.

2

Definition 5. Given a substitution θ = {V1 ← t1, . . . , Vn ← tn} we define

eqn(θ) = {V1 = t1, . . . , Vn = tn}.

2

We denote with Set(T, P ) the set of pairs 〈bindings, updates〉 computed as
answers to the transaction T .

Definition 6 (Query answers). Given an Active-U-Datalog program P and a
simple transaction T = U0, B1, . . . , Bn, we define the operator Set as follows:

Set((U 0, B1, . . . , Bn), P ) = {〈b, U〉 | Ai ← U i ∈ F(P ), 1 ≤ i ≤ n
θ = mgu((B1, . . . , Bn), (A1, . . . , An))
b = eqn(θ)|T
U = (U0, U1, . . . , Un)θ }.

2
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In U-Datalog, only pairs with consistent updates are inserted in Set. On the
contrary, we release this restriction, deferring again the conflict resolution at the
next step (Section 4.2).

Example 6. Let p(X), q(X) be a query to the program P of Example 5. Then,

Set((p(X), q(X)), P ) = { 〈{X = a}, {−r(a), +r(a)}〉, 〈{X = b}, {+r(b)}〉 }.

It is worth noticing that the first tuple contains an inconsistent set of updates.
3

4.2 Active Part Semantics

The active part semantics is given following the line of the PARK semantics
proposed in [23]. This semantics is well suited to a deferred-update approach,
like the one we used in modeling deductive part semantics, and adds considerable
flexibility in that it uses a parametric policy to resolve conflicts.

This semantics builds an auxiliary model containing, in particular, the update
atoms needed to trigger active rules and to obtain the new state of the system.
To this end, we define a bottom-up operator whose domain is

B± = B ∪ {+p(t̃),−p(t̃) | p(t̃) ∈ B, p ∈ Πe}

where B is the standard Herbrand Base.4 A subset of B± is an i-interpretation
(where the “i” stands for intermediate). An i-interpretation is consistent if it
does not contain any pair of opposite updates, i.e. +a and −a. Notice that this
is exactly the consistency definition we have already given for sets of updates.

In the following, we denote with B, B′ a (Πi ∪ Πe, Σ, V )-atom, with U a
(Πu, Σ, V )-atom and with G a (Π, Σ, V )-atom. We sometimes add subscripts to
these symbols.

To establish when an active rule can trigger, that is when its event oc-
curs and its condition holds, we introduce the valid function on atoms and i-
interpretations.

Definition 7 (Validity). [23] The validity of a ground literal a in an i-inter-
pretation I is defined as follows:

valid(a, I) =

 I ∩ {p(t̃), +p(t̃)} 6= ∅ if a = p(t̃);
I ∩ {p(t̃), +p(t̃)} = ∅ or − p(t̃) ∈ I if a = ¬p(t̃);
a ∈ I otherwise.

2

A positive (Πe ∪Πi, Σ, V )-atom is valid if it belongs to I or if it is inserted
by an update in I. A negative (Πe ∪Πi, Σ, V )-atom is valid if it is deleted by

4 We recall that the standard Herbrand Base is the set of ground positive atoms made
from predicate symbols in Πi ∪Πe and constant symbols in Σ.
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an update in I, or if its positive atom is not valid. A (Πu, Σ, V )-atom is valid
if it belongs to I. Notice that both p(t̃) and ¬p(t̃) can be valid according to
this definition. The intuition behind the above definition is that since a positive
or negative atom belongs to the condition part of the active rule, its validity
must be checked with respect to the derived atoms and also to the inserted and
deleted atoms. Otherwise, to represent the occurrence of an event, we require
that just the update modeling such an event belongs to the i-interpretation.

We want to use active rules to repair consistency-breaking updates. In other
words, active rules should take into account the current (possibly inconsistent)
state of the database, and in particular the set of requested updates (updates that
will not be necessarily performed). We also want active rules to take advantage
of the available intensional knowledge when checking conditions on the current
state of the database. However, condition checking must be unobtrusive, and in
particular, must not trigger further updates that would change the state of the
database as soon as it is observed. To fulfill this requirement, we remove the
update part from the rules of the intensional database by using the purification
operation defined below.

Definition 8 (Purification). Given the intensional database IDB of an Active-
U-Datalog program, we define its purified version ÎDB as the set of rules

B1, . . . , Bm → H.

such that there exists in IDB a rule

H ← U1, . . . , Un, B1, . . . , Bm.

2

Example 7. The purified form of the IDB of the program in Example 5 is the
following:

ÎDB: q(X) → p(X).
v(X,X) → q(X).
r(X) → q(X).

3

It is worth noting that a query is provable in ÎDB ∪ EDB if and only if it is
provable in IDB∪EDB, with the same computed answers. The purification only
avoids the side effects of the query evaluation. Also notice that we reversed the
direction of the arrow in order to have a uniform notation with active rules.

Naturally, other semantics are possible. For example, rules containing update
atoms could be removed or they could be maintained, considering only those
intensional atoms whose derivation generates sets of updates contained in the
current i-interpretation. With respect to these alternatives, purification does not
loose any intensional knowledge specified by the user.
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In the sequel, we generically use the term “rules” to refer to both active and
purified rules. Notice that Definitions 9, 10, and 11, given a set of rules, only take
into account active rules, while subsequent ones work on both kinds of rules.

Now, suppose that given an i-interpretation, more than one rule is fireable.
It could happen that the actions to be executed are in conflict: some rules want
to add a certain atom and others want to remove it from the i-interpretation.
In order to obtain a new consistent i-interpretation we prevent one set of rules
from firing: if we choose to insert the atom, only rules adding it are triggered,
otherwise only rules removing it are.

Formally, we first define the notion of conflict, which consists of an atom and
the sets of rules inserting and removing it.

Definition 9 (Conflicts). A pair (r, θ), where r is a rule and θ is a ground
substitution for r is called a rule grounding.

Let P be a set of rules and I an i-interpretation for P . Then conflicts(P, I)
is a set of maximal triples of the form (a, ins, del) such that a is a ground atom
and ins and del are sets of rule groundings. For each such triple the following
conditions must hold:

1. ∃ r = l1, . . . , ln → u1, . . . , uk, r′ = l′1, . . . , l
′
m → u′1, . . . , u

′
s, r, r′ ∈ P , and

∃ θ, θ′ ground substitutions such that
– ∀ 1 ≤ i ≤ n, valid(liθ, I),
– ∀ 1 ≤ i ≤ m, valid(l′iθ

′, I),
– ∃ i, j. 1 ≤ i ≤ k. ui = +l0, 1 ≤ j ≤ s. u′j = −l′0 and a = l0θ = l′0θ′.

2. For all possible r, r′ and θ, θ′, satisfying condition 1 above, (r, θ) ∈ ins and
(r′, θ′) ∈ del. 2

A triple (a, ins, del) ∈ conflicts(P, I) is called a conflict. To solve conflicts, a
parametric conflict resolution policy is introduced.

Definition 10 (Conflict resolution policy). Given an extensional database
EDB, a set of rules P , an i-interpretation I and a conflict c, we define
sel(EDB, P, I, c) as a total function with codomain {insert, delete}. 2

The intended meaning of sel(EDB, P, I, (a, ins, del)) is to choose whether the
atom a, object of the conflict, should be inserted in or deleted from I, thus
effectively choosing which of the conflicting update requests should prevail.

Gottlob et al. [23] present a number of common policies, and discuss their
advantages and disadvantages. We point out here just some common ones. The
principle of inertia states that both of the conflicting updates should be dis-
carded, effectively leaving EDB in the same state as before with regard to a
(in our framework, this can be obtained by returning insert if a was already in
EDB, delete otherwise). The rule priority policy, found in systems such as Ariel
[25], Postgres [37] and Starburst [42], assumes that each rule has a (static or
dynamic) priority associated with it; sel returns insert or delete as needed to
execute the update requested by the highest-priority rule (in our framework,
this can be obtained by looking up priorities in P ). Other policies, like voting
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schemas or user queries, are also reasonable, but the final choice is better left to
the particular application.

Based on the result of the sel policy, we prevent the rule instances in one of
the two sets of a conflict from firing, by blocking them according to the following
definition.

Definition 11 (Blocked rule instances). Given an extensional database
EDB, a set of rules P , a conflict resolution policy sel, and an i-interpretation I,
let

X = {del | (a, ins, del) ∈ conflicts(P, I) and sel(EDB, P, I, (a, ins, del)) = insert}
Y = {ins | (a, ins, del) ∈ conflicts(P, I) and sel(EDB, P, I, (a, ins, del)) = delete}.

We define then

blocked(EDB, P, I, sel) =

( ⋃
x∈X

x

)⋃⋃
y∈Y

y

 .

2

We block an entire rule instance, rather than a single update, so that the
set of updates requested by the same rule instance exhibits an atomic behavior:
either all the updates in the set are executed, or no update at all. This avoids
the risk of bringing a database in an inconsistent state due to partially-executed
actions.

Example 8. Let us consider the Active-U-Datalog program in Example 5. Let R
be the set of rules consisting of ÎDB (Example 7) and AR.

EDB: v(a,a). v(a,b). r(b).
R: r1 q(X) → p(X).

r2 v(X,X) → q(X).
r3 r(X) → q(X).
r4 -r(X),r(Y) → +v(X,Y).
r5 -r(X),v(X,Y) → -v(X,Y).
r6 -r(X),q(X) → +v(X,X).

Given an i-interpretation I = {v(a, a), v(a, b), r(b),−r(a), q(a)}, we have that

conflicts(R, I) = { (v(a, a), {(r6, {X←a})}, {(r5, {X←a, Y ←a})}),
(v(a, b), {(r4, {X←a, Y ←b})}, {(r5, {X←a, Y ←b})}) }.

Now, let us suppose that the conflict resolution policy sel is such that

sel(EDB, R, I, (v(a, a), {(r6, {X←a})}, {(r5, {X←a, Y ←a})})) = insert
sel(EDB, R, I, (v(a, b), {(r4, {X←a, Y ←b})}, {(r5, {X←a, Y ←b})})) = delete

Then, we have that

blocked(EDB, R, I, sel) = {(r5, {X←a, Y ←a}), (r4, {X←a, Y ←b})}.
3
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Using the concepts defined above, the immediate consequence operator on i-
interpretations can be defined as follows:

Definition 12 (Immediate consequence operator). Given a set of rules P ,
a set of blocked rule instances B, and an i-interpretation I, we define ΓP,B(I)
as the smallest set U satisfying the following conditions:

– I ⊆ U ;
– If r = l1, . . . , ln → u1, . . . , uk ∈ P and θ is a ground substitution for r such

that
• (r, θ) 6∈ B
• ∀ 1 ≤ i ≤ n, valid(liθ, I) then {u1θ, . . . , ukθ} ⊆ U .

2

The operator ΓP,B is monotonic on the lattice (℘(B±),⊆), hence continuous
because ℘(B±) is finite. The proof is analogous to that of Theorem 1.

The main difference of the above operator with respect to the traditional
immediate consequence operator of logic programming is that it may happen
that some of the rules are not fired even if their body is valid.

Example 9. Maintaining the definitions of Example 8, we compute the value of
ΓR,∅(I), i.e. when no rule is blocked.

ΓR,∅(I) = { v(a, a), v(a, b), r(b), −r(a), q(a), p(a), q(b),+v(a, b), −v(a, a),
−v(a, b), +v(a, a) }

The resulting set is inconsistent. However, if we compute ΓR,B(I) where B
is the set of blocked rules in Example 8, i.e. B = blocked(EDB, R, I, sel), then
we obtain the following consistent i-interpretation:

ΓR,B(I) = { v(a, a), v(a, b), r(b),−r(a), q(a), p(a), q(b),−v(a, b), +v(a, a) }
Notice how the use of blocked has prevented the insertion of any conflict in

ΓR,B(I). 3

In general, the application of the function ΓP,B to a consistent i-interpretation
does not return a consistent i-interpretation, as shown in the previous example.
Therefore, we cannot compute the semantics of P as the least fixpoint of ΓP,B.
We must instead appropriately select rules, that is we must build a set of blocked
rules B such that the least fixpoint of ΓP,B is consistent. Thus, instead of dealing
with i-interpretations, the notion of bi-structures is introduced, as in [23], in
order to take into account blocked rules.

Definition 13 (Bi-structures). A bi-structure 〈B, I〉 consists of a set B of
rule groundings and of an i-interpretation I. We define an order relation on
bi-structures as follows:

〈B, I〉 ≺ 〈B′, I ′〉 def⇔
{

B ⊂ B′ or
B = B′ and I ⊂ I ′

Moreover, given A and B bi-structures, A � B ≡ (A = B ∨ A ≺ B). 2
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Bi-structures ordered by � form a complete partial order because there are
only finitely many pairs 〈B, I〉. On this domain we can define an operator having
a fixpoint, that is used as model of the active part.

Definition 14 (∆ operator). Given a set of rules P , a bi-structure 〈B, I〉 and
a conflict resolution policy sel, we define

∆P,sel(〈B, I〉) =
{ 〈B, ΓP,B(I)〉 if ΓP,B(I) is consistent;
〈B ∪ blocked(I⊥, P, I, sel), I⊥〉 otherwise.

where I⊥ is the set of the extensional atoms of I, i.e. I⊥ = {p(t̃) ∈ I | p ∈
Πe}. 2

The definition of ∆ we give here differs from the original in [23] because
the set of rules P contains not only rules with updates in the right hand side
(properly active rules) but also purified rules that allow us to derive intensional
knowledge rather than new updates. Notice that this extension does not af-
fect the consistency of i-interpretations, since the purified rules can only add
(Πi, Σ, V )-atoms to the i-interpretation.

The intuitive idea of the ∆ operator is that, if no conflict arises, ∆ does not
change the blocked rules set B, and only the i-interpretation of the bi-structure is
changed by adding the immediate consequences of the non blocked rules. On the
other hand, as soon as a conflict arises, the conflict is solved via the resolution
policy sel and all blocked rule instances are collected. Then the computation of ∆
is started again from the i-interpretation I⊥ with the augmented set of blocked
rules. The i-interpretation I⊥ represents the set of the extensional atoms of the
database, and we have to resort to it to be sure that the starting point of the new
computation does not contain atoms whose validity depends on actions of rule
instances that are now blocked. As remarked in [23] for the PARK semantics,
this semantics may be viewed as a smooth cycle integrating inflationary fixpoint
computation [27] and conflict resolution policies.

Remark 1. The ∆ operator is not monotonic (thus not continuous) since it de-
pends on the function blocked which, in turns, depends on an arbitrary function
sel. In fact, consider again Example 8. Suppose we add the following active rule
to the program:

r7 -r(X),q(Y),r(Y) → +v(X,Y)

Consider the i-interpretation I ′ = I ∪ {q(b)}. The set conflicts(R, I ′) is the fol-
lowing:

conflicts(R, I ′) = { (v(a, a), {(r6, {X ← a})}, {(r5, {X ← a, Y ← a})}),
(v(a, b), {(r4, {X ← a, Y ← b}), (r7, {X ← a, Y ← b})},

{(r5, {X ← a, Y ← b})}) }.
The occurrence of the atom q(b) in I ′ triggers rule r7.

Let us suppose also that sel is a rule priority conflict resolution policy, and
that rules are prioritized according to their position in the program. Therefore,
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sel chooses to insert (delete) the atom, object of the conflict, if in the set of
insertion (deletion) rules we find the rule with the highest priority.

sel(EDB, R, I ′, (v(a, a), {(r6, {X ← a})}, {(r5, {X ← a, Y ← a})})) = insert
sel(EDB, R, I ′, (v(a, b), {(r4, {X ← a, Y ← b}), (r7, {X ← a, Y ← b})},

{(r5, {X ← a, Y ← b})})) = insert

It is worth noticing that in the second conflict now the policy chooses to insert
the atom v(a, b) because the rule r7 has the highest priority.
Then, we have that

blocked(EDB, R, I ′, sel) = {(r5, {X ← a, Y ← a}), (r5, {X ← a, Y ← b})}.
Comparing the set blocked(EDB, R, I, sel) and blocked(EDB, R, I ′, sel), we ob-
serve that there is no relation of containment between them. Therefore blocked
is not monotonic. As consequence,

〈blocked(I⊥, R, I, sel), I⊥〉 6� 〈blocked(I ′⊥, R, I ′, sel), I ′⊥〉

= =
∆P,sel(〈∅, I〉) 6� ∆P,sel(〈∅, I ′〉)

where I⊥ = I ′⊥ = EDB. 3

Since ∆ is not continuous, we cannot prove that ∆ has a fixpoint by using
the fixpoint theorem. However, the ∆ operator is growing, therefore, for the
finiteness of the domain, a fixpoint is reached by iterating ∆ a finite number of
steps.

Lemma 1. Given a set of rules P , a conflict resolution policy sel, a bi-structure
A = 〈B, I〉, the following statements hold:

1. A � ∆P,sel(A),
2. there exists k such that ∆k

P,sel(A) is a fixpoint of ∆P,sel.

Proof. We proceed along the lines of Theorem 4.1 in [23].

1. Let ∆P,sel(A) = 〈B′, I ′〉. If I ′ is consistent, then B′ = B and I ′ = ΓP,B(I) ⊇
I by definition of Γ ; hence 〈B, I〉 � 〈B′, I ′〉. If instead I ′ is not consistent,
then B′ = B ∪ blocked(EDB, P, I, sel) ⊇ B and so we have again 〈B, I〉 �
〈B′, I ′〉.

2. By statement 1, for all natural numbers n, we have

∆n
P,sel(A) � ∆P,sel(∆n

P,sel(A)).

Hence, {∆i
P,sel(A)}i∈N is a chain in the cpo of the bi-structures. Since such

a cpo is finite, every chain consists of a finite number of elements. Therefore

∃k. ∀n ≥ k. ∆n
P,sel(A) = ∆n+1

P,sel(A).

We can conclude that ∆k
P,sel(A) is a fixpoint of ∆P,sel. 2
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The next theorem shows that we can find a set of blocked rules B such that
the least fixpoint of ΓP,B is a consistent i-interpretation.

Theorem 2. Given a set of rules P , a conflict resolution policy sel, a bi-struc-
ture A = 〈B, I〉, with I a set of ground extensional atoms, there exists k such that
∆k

P,sel(A) is a fixpoint of ∆P,sel and if ∆k
P,sel(A) = 〈B′, I ′〉, then I ′ = lfpI(ΓP,B′)5

and I ′ is consistent.

Proof. First we notice that if ∆P,sel(〈B1, I1〉) = 〈B2, I2〉 then I1
⊥ = I2

⊥, that
is the set of ground extensional atoms is not modified by ∆. This follows from
the definition of ∆P,sel and from the fact that ΓP,B can add only intensional and
update atoms to an i-interpretation. As a consequence, for all natural numbers
n, if ∆n

P,sel(〈B1, I1〉) = 〈Bn+1, In+1〉 then I1
⊥ = In+1

⊥.
Since the i-interpretation of A only consists of extensional atoms, then I⊥ = I.

By Lemma 1, there exists k such that ∆k
P,sel(A) is a fixpoint of ∆P,sel. By defi-

nition of ∆ and by the above remark, there exists i ≤ k such that ∆i
P,sel(A) =

〈B′, I〉. Then for all j such that i ≤ j ≤ k, we have ∆j
P,sel(A) = 〈B′, Γ j−i

P,B′(I)〉,
because B′ does not increase. Since ∆k

P,sel(A) = 〈B′, I ′〉 = 〈B′, Γ k−i
P,B′(I)〉 is a

fixpoint, then 〈B′, Γ k−i
P,B′(I)〉 = 〈B′, Γ k−i+1

P,B′ (I)〉. Therefore I ′ = lfpI(ΓP,B′) and
by definition of ∆, the set I ′ is consistent (otherwise the set of blocked rules
would be augmented). 2

4.3 Integrating Deductive and Active Semantics

In this section we show how the two semantics presented above fit together and
how the result of a transaction is computed.

We are interested in modeling as observable property of a transaction the
following information: the set of answers, the database state, and the result of
the transaction itself (i.e., Commit or Abort).

Definition 15 (Observables). An observable is a triple 〈Ans,EDB, Res〉 where
Ans is a set of bindings, EDB is an extensional database and Res ∈{Commit,
Abort}. The set of observables is Oss. 2

The semantics of the previous steps (Sections 4.1 and 4.2) does not include the
execution of the collected updates, neither considers the transactional behavior.
We now define a function which, given an i-interpretation and the current state
of the system, returns the next state obtained by executing the updates in the
i-interpretation.

Definition 16 (Updates incorporation).
Given an i-interpretation I and an extensional database EDB, we define

incorp(I,EDB) = (EDB \ {a | −a ∈ I}) ∪ {a | +a ∈ I}.
2

5 lfpI(f) denotes the least fixpoint of f which is greater than or equal to I .
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Now, we can give the Active-U-Datalog semantics.

Definition 17 (Active-U-Datalog semantics). Given an Active-U-Datalog
program P (with EDB extensional database, IDB intensional database, and AR
active rules), a transaction T and a conflict resolution policy sel, the semantics
of a transaction T is denoted by the function Sem defined as

SemP,sel(T ) = SIDB,AR,sel(T )(〈∅,EDB, Commit〉)
where the function SIDB,AR,sel(T ) : Oss→ Oss is defined as follows:
If T is a simple transaction, then

SIDB,AR,sel(T )(〈α, ε, ρ〉) =



〈∅, ε, Abort〉 if ρ = Abort

〈Ans, incorp(I, ε), Commit〉 if ρ 6= Abort
and U is ground

〈∅, ε, Commit〉 otherwise

where

Ans = {bj | 〈bj , uj〉 ∈ Set(T, P )}
U =

⋃
{uj | 〈bj , uj〉 ∈ Set(T, P )}

〈B, I〉 = ∆ω
Ξ,sel(〈∅, ε〉)

Ξ = (ÎDB ∪AR) ∪ { → +a | +a ∈ U} ∪ { → −a | −a ∈ U}.

If T is a complex transaction T1; . . . ; Tk (k ≥ 2), then

SIDB,AR,sel(T1; . . . ; Tk)(Oss) = SIDB,AR,sel(T2; . . . ; Tk)(SIDB,AR,sel(T1)(Oss))

where T1, . . . , Tk are simple transactions. 2

To compute the semantics of a simple transaction, first we build the set of
answers in the marking phase (Definition 6). This step returns a set of bindings
for the variables of the transaction (Ans) and a set of updates (U) which are
requested but which will not necessarily be executed. Then we gather rules in
order to apply the ∆ operator (Definition 14).

Such a set of rules (Ξ) contains the purified rules from the intensional
database (ÎDB), the rules in AR and the updates requested from the deduc-
tive part (U), represented as rules with neither event nor condition. Therefore
we keep in this set also the intensional knowledge of the program to verify the
condition part of the active rules; the updates in U become the initial events to
which the active rules in AR have to react.

To obtain the set of updates to be executed, we apply the ∆ operator
starting from an empty set of blocked rule instances and from the extensional
database as initial i-interpretation (〈∅, EDB〉). Theorem 2 assures that a fixpoint
of ∆Ξ,sel is reached in a finite number of steps by computing the approximations
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∆i
Ξ,sel(〈∅, EDB〉) and that the i-interpretation, I, in the resulting bi-structure is

consistent. Finally, the new state of the database is computed by incorporating
the updates belonging to I in the current state of the database (Definition 16).

The semantics of a complex transaction is simply given by the sequential
composition of the semantics of its components. The state of the system is up-
dated after each simple transaction. Besides, this semantics discards the answers
to all but the last simple transaction, to stay close to the approach in [9].

It is worth remarking that our semantics, unlike the semantics developed in
[9], never generates aborts because of conflicts, thus augmenting the successful
computations. This is possible because of the presence of the active component
of our language, and especially of the conflict resolution policy. However, we
propagate extra-semantics Aborts, e.g., those generated by media failures.

Moreover, if non-ground updates are requested, we do not abort, in keeping
with [5,9], but we commit discarding all changes to the state of the system, to
point out that we are not able to decide which updates have to be executed in
order to guarantee safety.

As already noted, the answer set Set and the ∆ fixpoint are computed in a
finite number of steps, hence SemP,sel is computed in a finite number of steps.
Actually, it is computable in polynomial time in the size of the state of the
system when the conflict resolution policy sel is implementable in polynomial
time. This result follows from the fact that the PARK semantics for active rules
as well as the U-Datalog semantics guarantee polynomial complexity [7,23], when
the condition above is satisfied.

Example 10. Let us consider again the database introduced in Example 4. We
want to extend it by adding information about the school library, namely avail-
able books and loans. We assume that it is the library policy to claim back books
on loan as soon as the borrower passes the exam the book is associated with,
and that further loans are to be denied as long as books claimed are not given
back to the library. However, a student can escape this policy, and obtain an
extension of a loan, by presenting a written request to this end from his tutor.

The following database P , building on that presented in Example 4, satisfies
our requirements:

EDB: student(frank). student(mary).

exam(engl). exam(phys).

book(othello,engl). book(principia,phys).

book(quanta,phys).

onloan(quanta,frank). onloan(principia,frank).

IDB: pass(S,E) ←student(S), exam(E), +passed(S,E).

leave(S) ←student(S), −student(S).
denyloan(B,S) ←request(X,S), book(X,E).

denyloan(B,S) ←onloan(B,X), student(S).

return(B,S) ←onloan(B,S), −onloan(B,S).
extend(B) ←onloan(B,S), −request(B,S).
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AR: −student(S), passed(S,E) →−passed(S,E).
−student(S), onloan(B,S) →+request(B,S).

−onloan(B,S), request(B,S) →−request(B,S).
+passed(S,E), onloan(B,S), book(B,E) →+request(B,S).

When Frank passes physics, he obtains from his tutor an extension on the
loan of the Quanta. We record this information in the database by executing a
transaction pass(frank,phys), extend(quanta).

The first rule in IDB causes the insertion of passed(frank,phys) in the
database; this, in turn, causes the firing of the last active rule, whose con-
ditions are met by onloan(principia,frank) and book(principia,phys),
and by onloan(quanta,frank) and book(quanta,phys), so the insertion of
request(principia,frank) and request(quanta,frank) in the database is
requested.

However, the last rule in the IDB, due to the presence of extend(quanta)
in the transaction, asks for the removal of request(quanta,frank) from the
database, so a conflict arises. We suppose that the database is using an inertial
conflict resolution policy, so the conflict is solved by preventing the insertion of
request(quanta,frank) (but not of request(principia,frank)).

If Frank asks another loan, the third rule in the IDB will deny the loan due to
the presence of request(principia,frank) in the database. Frank will have to
return the Principia first, as expressed by the query return(principia,frank).
In response to this query, the loan record onloan(principia,frank) will be re-
moved, and this in turn will fire the third active rule, thus removing
request(principia,frank) from the database. Frank’s requests for other books
on loan will then be accepted.

Let us now verify this behavior in terms of our semantics. The first step
consists of computing the fixpoint semantics of the deductive part, as shown in
Definition 3.

F(P ) = { student(S)6, exam(E), book(othello,engl), book(quanta,phys),
book(principia,phys), onloan(quanta,frank),
onloan(principia,frank), pass(S,E)←+passed(S,E),
leave(S)←−student(S), denyloan(quanta,S),
denyloan(principia,S),
return(quanta,frank)←−onloan(quanta,frank),
return(principia,frank)←−onloan(principia,frank),
extend(quanta)←−request(quanta,frank),
extend(principia)←−request(principia,frank) }

The answer to the transaction T = pass(frank, phys), extend(quanta), by Def-
inition 6, is thus

Set(T, P ) = {〈∅, {+passed(frank, phys),−request(quanta, frank)}〉}.
6 As a shorthand, in the following we write S to stand for all elements in {mary, frank},

and E for all elements in {engl, phys}.
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Next, we have to compute the active part semantics. The purified database,
according to Definition 8, is

dIDB: student(S), exam(E) →pass(S,E).

student(S) →leave(S).

request(X,S), book(X,E) →denyloan(B,S).

onloan(B,X), student(S) →denyloan(B,S).

onloan(B,S) →return(B,S).

onloan(B,S) →extend(B).

Thus, we have

Ξ = ÎDB ∪AR ∪ {→+ passed(frank, phys),→− request(quanta, frank)}.

The computation proceeds by computing the fixpoint of ∆Ξ,sel(〈∅, EDB〉) as
follows:

∆0
Ξ,sel(〈∅, EDB〉) = 〈∅, I0 = EDB〉

∆1
Ξ,sel(〈∅, EDB〉) = 〈∅, I1 = I0 ∪ {pass(S, E), leave(S),

denyloan(quanta,S), denyloan(principia,S),
return(quanta, frank), return(principia, frank),
extend(quanta), extend(principia),
+passed(frank, phys),−request(quanta, frank)}〉.

Now, in the computation of ΓΞ,∅(I1) a conflict arises:

ΓΞ,∅(I1) = I2 = { student(S), exam(E), book(othello,engl), book(quanta,phys),
book(principia,phys), onloan(quanta,frank),
onloan(principia,frank), pass(S,E), leave(S),
denyloan(quanta,S), denyloan(principia,S ),
return(quanta,frank), return(principia,frank),
extend(quanta), extend(principia), +passed(frank,phys),
−request(quanta,frank), +request(principia,frank),
+request(quanta,frank) }

The conflict is

c = (request(quanta, frank), {(r1, {S←frank, E←phys, B←quanta})},
{(r2, ∅)} )

where r1 is the rule

+passed(S,E), onloan(B,S), book(B,E) →+request(B,S).

from AR, while r2 is the rule

→−request(quanta,frank).
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inserted in Ξ as result of the deductive part semantics. Since we are using an
inertial conflict resolution policy sel, and request(quanta, frank) is not in EDB,
we have that

sel(EDB, Ξ, I2, c) = delete

and thus

B′ = blocked(EDB, Ξ, I2, sel) = {(r1, {S←frank, E←phys, B←quanta})}.

The computation of ∆ω
Ξ,sel continues without further conflicts, and the fixpoint

is:

∆4
Ξ,sel(〈∅, EDB〉) = 〈B′, I4 = EDB ∪ {pass(S, E), leave(S),

denyloan(quanta,S), denyloan(principia,S),
return(quanta, frank), return(principia, frank),
extend(quanta), extend(principia),
+passed(frank, phys),−request(quanta, frank),
+request(principia, frank)}〉

The new database after having incorporated the updates is EDB′.

EDB′ = incorp(I4, EDB) = { student(mary), student(frank), exam(engl),
exam(phys), passed(frank,phys),
book(othello,engl), book(quanta,phys),
book(principia,phys), onloan(quanta,frank),
onloan(principia,frank), request(principia,frank)
}

We call P ′ = IDB ∪ EDB′ ∪AR.
If now Frank asks to borrow another book, say Othello, the system checks if

the loan is permitted before giving its ok, i.e. T ′ = denyloan(othello, frank).
The deductive part semantics returns the following set:

F(P ′) = EDB′∪{ pass(S,E)←+passed(S,E), leave(S)←−student(S),
denyloan(quanta,S), denyloan(principia,S ),
denyloan(othello,frank),
return(quanta,frank)←−onloan(quanta,frank),
return(principia,frank)←−onloan(principia,frank)
extend(quanta)←−request(quanta,frank),
extend(principia)←−request(principia,frank) }

This time no updates are collected from the deductive part semantics, so
the active part semantics immediately converges with an empty set of updates,
thus leaving the database in the same state as before, i.e., EDB′. Since the
query was answered positively, Frank will not be lent Othello. To obtain it,
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he will have to return Sir Isaac’s masterwork, by executing the transaction
return(principia, frank). In order to solve this transaction, the deductive part
semantics computes

Set(return(principia, frank), P ′) = {〈∅, {−onloan(principia, frank)}〉}

and we have

Ξ ′′ = ÎDB ∪AR ∪ {→− onloan(principia, frank)}.

The fixpoint of ∆ω
Ξ′′,sel(〈∅, EDB′〉) is reached in three steps, without any

conflict, and consists of an empty set of blocked rules and of the following
i-interpretation:

I ′′ = EDB′∪{ pass(S,E), leave(S), denyloan(othello,frank),
denyloan(quanta,S), denyloan(principia,S ),
return(quanta,frank), return(principia,frank), extend(quanta),
extend(principia), -onloan(principia,frank),
-request(principia,frank) }

and thus the new extensional database EDB′′, after updates incorporation, is

EDB′′ = incorp(I ′′, EDB′) = { student(mary), student(frank), exam(engl),
exam(phys), passed(frank,phys),
book(othello,engl), book(principia,phys),
book(quanta,phys), onloan(quanta,frank) }

Now, Frank has no longer pending requests from the library, hence he can
borrow other books.

3

5 Conclusions and Future Work

In this paper we have extended U-Datalog, in a conservative way, with support
for active rules. The resulting language, called Active-U-Datalog, provides a
uniform logical representation of queries, transactions, and active behavior. The
semantics extends the PARK semantics to deal not only with active rules but
also with transactions. In particular, updates generated by deductive rules and
updates generated by active rules are treated in a uniform way. Similarly to the
PARK semantics, a flexible management of conflicts is also provided. Thus, our
approach can also be seen as an extension of U-Datalog to deal with multiple
policies for conflict resolution. As far as we know, no other approach of this kind
has been proposed yet in the context of deductive databases.

This work can be extended in several ways. A first important question is
related to the definition and analysis of properties concerning distributed query,
transaction and active rule execution. Some preliminary results about the anal-
ysis of U-Datalog programs have been presented in [6]. Active rules offer an easy
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mechanism to express system reactions depending on the generation of specific
events; while only update requests were considered as events in this paper, the
extension to other classes of events seems promising and relevant for practical
applications. Also, a better handling of negation both in the deductive and in
the active part is needed; work is currently in progress on this issue. A formal
analysis of the expressive power of Active-U-Datalog with respect to U-Datalog
is another important topic that should be investigated.

An implementation of Active-U-Datalog could be obtained by extending the
implementation of U-Datalog, described in [8], according the the semantics given
in this paper. Since Active-U-Datalog is conservative with respect to U-Datalog,
such an extension does not seem difficult.
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