
Conflict Characterization and Analysis of Non Functional Requirements:
An Experimental Approach

Dewi Mairiza, Didar Zowghi Vincenzo Gervasi
Faculty of Engineering and Information Technology

University of Technology Sydney, Australia
(Dewi.Mairiza; Didar.Zowghi)@uts.edu.au

Dipartimento di Informatica
Università di Pisa, I-56125 Pisa, Italy

gervasi@di.unipi.it

Abstract—Prior studies reveal that conflicts among Non
Functional Requirements (NFRs) are not always absolute.
They can also be relative depending on the context of the
system being developed. Given that existing techniques to
manage the NFRs conflicts are mainly focused on cataloguing
the interrelationships among various types of NFRs, hence a
technique to manage the NFRs conflicts with respect to NFRs
relative characteristic is needed. This paper presents a novel
framework to manage the conflicts among NFRs with respect
to NFRs relative characteristic. By applying an experimental
approach, the quantitative evidence of NFRs conflicts will be
obtained and modeled. NFRs metrics and measures will be
used in the experiments as parameters to generate the
quantitative evidence. This evidence can then allow developers
to identify and reason about the NFRs conflicts. We also
provide an example of how this framework could be applied.

Keywords–non-functional requirements, conflict, relative,
identification, characterization, analysis, management,
framework, experiment.

I. INTRODUCTION
It is widely acknowledge in the literature that

the correct implementation of Non-Functional
Requirements is recognized as a critical factor to
the success of software projects. NFRs address the
essential issue of software quality [1-3]; and they
are also considered as the qualifications of the
operations [4, 5]. However, although NFRs have
been a focus of attention by researchers and
practitioners alike for almost three decades, studies
to date indicate that there is not enough progress
made in dealing with NFRs compared to
Functional Requirements (FRs). Managing NFRs
is still difficult to perform due to the fact that most
software developers do not have adequate
knowledge about NFRs and little help is available
in the literature [6]. Capturing, specifying, and
managing NFRs are still difficult to perform and
NFRs are often poorly articulated in the software
requirements document [7, 8].

NFRs tend to interfere, conflict, and contradict
with one another. Unlike FRs, this inevitable
conflict arises as a result of inherent contradiction
among various types of NFRs [1, 2]. Certain
combinations of NFRs in the software systems
may affect the inescapable trade offs [2, 9, 10].
Achieving a particular type of NFRs can prevent
the achievement of the other type(s) of NFRs.

Dealing with NFRs conflict is essential due to
several reasons. Firstly, conflict among software
requirements is inevitable [1, 12, 13]. Conflicting
requirements are one of the three main problems in
the software development in terms of the
additional effort or mistakes attributed to them
[13]. A study of two-year period multiple-project
analysis conducted by Egyed & Boehm [14, 15]
reports that between 40% and 60% of
requirements involved are in conflict, and among
them, NFRs involved the greatest conflict, which
was nearly half of requirements conflict [16].
Lessons learnt from practices also confirm that
one of the essential issues during NFRs
specification is management of conflict among
interacting NFRs [2]. Experience shows that most
systems suffer from severe tradeoffs among the
major groups of NFRs. In fact, conflict resolutions
for handling NFRs conflicts often result in
changing overall design guidelines, not by simply
changing one module.

II. PROBLEM DEFINITION
A number of techniques to manage conflict

among NFRs have been discussed in the literature
[11]. Majority of them provide documentation,
catalogue, or list of potential conflict. These
catalogues represent the interrelationships among
various types of NFRs. Some examples are: the

QARCC win-win approach [10, 17, 18], trace
analyzer of the requirements traceability technique
[19], and a technique that adopts a hierarchical
constraint logic programming approach [20].
Apart from strength and weaknesses of each
technique, NFRs can be viewed, interpreted, and
evaluated differently by different people and
different context within which the system is being
developed. Consequently, the positive or negative
relationships among NFRs are not always obvious.
These relationships might change depending on
the meaning of NFRs in the context of the system
being developed. Due to this relative
characteristic, cataloguing the NFRs relationships
in order to represent the conflict among NFRs

would inevitably produce disagreement.
Identifying the NFRs conflict without
understanding the meaning of NFRs in the system
being developed may produce the erroneous
conflict identification and analysis.

Prior studies [11, 21-23] reveal that the
relativity of NFRs conflict can be presented in
three categories: absolute conflict (labeled as
“X”); relative conflict (labeled as “*”); and never
in conflict (labeled as “O”). As illustrated in
Figure 1 nineteen pairs of NFRs in this catalogue
have relative conflict, which means that they are
not always in conflict because they are claimed to
be in conflict in certain cases but not in conflict in
others.

Figure 1 - Catalogue of Conflicts among NFRs [21]

Given the above context, we are motivated to

perform a further investigation into the conflict
among NFRs in general, in order to increase our
understanding about how NFRs conflict with, and
affect one another; and how this conflict might be
managed. Our research question has been
formulated as follow:

“With respect to the NFRs relative
characteristic, how can we create a framework

that can assist developers to identify and
characterize the conflict among NFRs?”

A framework to characterize and analyze the

relative conflict among NFRs is presented as the
novel contribution of this paper. The framework
utilizes an experimental-based approach as the
foundation to characterize the conflict and to
perform conflict decision analysis. NFRs metrics
and measure are used as parameters to collect the

quantitative evidence and to model the NFRs
conflict relationships.

III. AN EXPERIMENTAL APPROACH FOR NFRS
CONFLICT MANAGEMENT

In our previous work, we have proposed a
preliminary framework to manage the relative
conflict between two types of NFRs, which are
security and usability requirements [24]. This
framework focuses specifically on the application
of ontology in managing the relative conflict
between security and usability. By following the
Helix-Spindle model for ontological engineering
[25], an ontological model of the security-usability
requirements conflict has been developed. This
ontology shows when security and usability are in
conflict, what the impacts of the conflict are, and
what the relevant strategies to resolve this conflict
are. Therefore this framework can be used as a
basis to assist analysts in managing conflict
between security and usability requirements.

Inspired by this framework, in this paper we
present the sureCM framework that is able: (1) to
manage conflict among various types of NFRs;
and (2) to provide quantitative reasoning about the
NFRs conflict. We have adopted an experimental
approach as the basis to attain the evidence to
identify and characterize the conflict among
NFRs. In this framework, NFRs are characterized
as the associated system functionality and systems
operationalizations, and NFRs metrics and
measures are used as parameters to gather the
quantitative evidence in the experiments. This
empirical evidence will be used to perform
conflict decision analysis. The sureCM
Framework is depicted in Figure 2 and the main
terminology used in the framework is presented in
Table 1.

Table 1 – sureCM Terminology

As shown in Figure 2, the sureCM Framework
consists of one type of input: NFRs as written in
software requirements documents; five-layer
process: P1, P2, P3, P4, P5; and two types of
output: nature of conflict and conflict decision. In
the process model, the ontology and methods will
be used as the basis to execute the five-layer
process. The ontology consists of functionality;
NFRs metrics and NFRs measures. The
knowledge from this ontology will be used as the
parameter to set up and run a series of
experiments. Furthermore, two methods have been
defined to manage the conflict: Method for
Conflict Characterization and Method for Conflict
Decision Analysis. Conflict characterization
method will be used to characterize the conflict
from the results of the experiments, while conflict
decision analysis method will be used to identify
the conflict decision based on the characterization
defined. The relationship and interaction between
these components is illustrated in Figure 3.

As shown in Figure 3, two types of NFRs (e.g.
security requirement and usability requirement)
will be used as the input to the framework. Then
the conflict management process begins with the
case definition, which is identifying the associate
functionality of the system, i.e. relevant features of
a software system, and the operationalizations, i.e.
a way of implementing the defined functionality.
Functionality part of the ontology will be used to
assist with the identification process of
operationalizations.

Figure 2 – sure CM Framework

By utilizing the ontology of NFRs metrics and
NFRs measures, the NFRs that come as the input
to the framework will be analyzed to identify their
meanings and their associate metrics and measures
in the context of the system being developed.
These metrics and measures will be used in the
experiments to quantify the NFRs level/degree of
satisficing1 in the system being developed.

1 Satisfice is the term first coined by Hebert Simon [26]

As a result of P1: Define Case, and P2: Identify
Metrics and Measures, four output will be
generated: system functionality; associate
operationalization; NFR1 metric and measure;
NFR2 metric and measure. Those output that have
been defined with respect to the context of the
system being developed, will then be used as the
input to the next process layer, P3: Setup and Run
Experiments. The process P3, is dedicated to

designing the suitable experiments to collect the
numerical data by utilizing the outputs attained
from process P2. In this process, each applicable
operationalization will be quantified using the
defined NFRs metric and measure. The result of
this experiment is the NFR’s satisficing
level/degree in the system. The results obtained
from the experiments will then be analyzed by
using Conflict Characterization Method. This
method will be executed in the P4: Characterize

Conflict process. In characterizing NFRs conflict,
conflict characterization method begins by
creating a two-dimensional conflict relationship
graph based on the quantitative data obtained in
P3. Each operationalization conducted in the
experiments will be plotted based on its NFRs
metrics scale. By plotting all of the defined
operationalizations in P4, a conflict relationship
characterization will be created.

Figure 3 – sureCM Interaction

Lastly, by applying Conflict Decision Analysis

Method, developers should be able to analyze the
output from previous process, P4, to identify the
suitable conflict decision to assist with the

development of strategy to deal with the conflict.
This analysis will be conducted in the process P5:
Conflict Decision Analysis process. The analysis
conducted will then determine whether the
identified conflict is strong, weak, or even if there
is no conflict among these NFRs, and decision
about this severity of conflict is based on the shape
of the graph plotted in process P4.

We now present an example of the application
of our approach in managing NFRs conflict.

IV. APPLYING THE APPROACH
Consider the following two NFRs given in a

Software Requirements Specification document:

NFR 1: The Chemical Tracking System shall have
identified/authenticated the user and protect user’s
personal information.

NFR 2: A chemist who has never used the system
before shall be able to learn using the system
easily and independently.

NFR1 and NFR2 will be used as the inputs and

the associate functionality and their
operationalizations are defined in Table 2.

Table 2 – Functionality and Operationalizations

NFR1 represents a security requirement and
NFR2 a usability requirement. Previously defined
ontology for security and usability metrics and
measure are then utilized to identify the suitable
metrics and measures for these requirements
within the given context, as shown in Table 3.

By using the parameters generated from
previous processes (as shown in Table 4), a series
of experiments to measure the security and
usability level of each operationalization were
conducted. In the experiment, first step was
identifying the potential instruments for each
operationalization. For example, pincode used to
get access in the Automated Teller Machine

(ATM) or smartphone can be used as the
instrument for Fixed Key operationalization, or
scrambled pincode device can be used for
Scrambled Key operationalization. By applying
the measuring method of chosen NFRs metrics
and measures; the quantitative security and
usability level can be obtained. In this example,
the length of pincode fixed-digit was considered as
the representation of security measure frequency
of review. The length of time (in seconds) needed
by the user to learn to use the function correctly
was used to measure the system usability.

Table 3 – Metric and Measures Identification

Table 4 – Parameter for the Experiments

For each operationalization, the quantitative

data obtained from the experiments is recorded
and presented in Table 5.

Table 5 – sureCM Experimental Results

By using the experimental results in Table 5
and by applying Conflict Characterization Method
of sureCM Framework, we then plot the conflict
relationship between security and usability
requirements as depicted in Figure 5.

Finally, by applying the Conflict Decision
Analysis Method from sureCM Framework,
practitioners should be able to analyze the nature
of conflict to decide what levels of security and
usability can be tolerated in the system. According
to Figure 5, as the conflict relationship graph
shows a non-linear function, there is an obvious
conflict between security (privacy metric) and
usability (ease of function learning metric). Also,
as there is no clear optimum solution/s existing in
the diagram, i.e. maximum security and maximum
usability, this means that the existing conflict is a
strong conflict, and the developer must choose the
satisficing-solution for finding the right balance of
attributes satisfaction. Conflict relationship graph
can be a linear graph or a non-linear one. As long

as there is a tradeoff in that graph, it means there is
a conflict there.

Figure 5 – Nature of Conflict

V. CONCLUSION
This paper describes a novel framework to

identify and manage the relative conflict among
NFRs. The framework utilizes an experimental-
based approach as the foundation to characterize
and analyze the conflict. NFRs metrics and
measure are used as parameters to gather the
quantitative evidence of NFRs conflict
relationship. This evidence is used as the basis to
characterize the conflict and to perform conflict
decision analysis. An example that shows how the
approach can be applied has also been presented.

This framework assumes a pair wise NFRs
conflict characterization and decision analysis.
However, it can also be easily extended to be
applied in situation where conflict exists among
more than two NFRs.

Although in this paper the conceptual model of
the framework has been established; and a number
of articles have also been published on
investigating the notion of NFRs, the conflict
among NFRs, the catalogue of conflict among
NFRs with respect to NFRs relative characteristic
and a preliminary framework on security and
usability conflict [11, 21-24, 27, 28], however,
several important tasks remain:

1) empirical evaluation
The framework will be empirically evaluated

through controlled experiments and then followed
by a series of industrial case studies. The reason
for conducting controlled experiments is because:
(a) “controlled experiments make it possible for
the careful observation and precise manipulation
of independent variables (e.g. proposed
framework); (b) allowing for greater certainty; and
(c) encourage the researcher to try out novel
frameworks in a safe and exploratory environment
before implementing them in the real world
settings” [29]. Effectiveness and efficiency will be
used as the evaluation criteria. Effectiveness
means that this framework can be used to manage
the NFRs conflict by considering NFRs relative
characteristic, while efficiency represents how fast
people can identify the conflict using the
framework.

2) tool support
To support the framework utilization, we also

plan to develop a semi-automatic tool that can
assist software developers, particularly
requirements engineers to perform conflict
management among NFRs.

ACKNOWLEDGMENT
We would like to thank The International

Schlumberger Foundation Paris for funding this
research through Faculty for the Future Award
Program.

REFERENCES

[1] L. Chung, et al., Non-functional
requirements in software engineering.
Massachusetts: Kluwer Academic
Publishers, 2000.

[2] C. Ebert, "Putting requirement
management into praxis: dealing with
nonfunctional requirements," Information
and Software Technology, vol. 40, pp. 175-
185, 1998.

[3] D. Firesmith, "Using quality models to
engineer quality requirements," Journal of
Object Technology, vol. 2, pp. 67-75,
2003.

[4] G. Kotonya and I. Sommerville, Non-
functional requirements, 1998.

[5] R. T. Mittermeir, et al., Modern software
engineering, foundations and current
perspectives. New York, NY, USA: Van
Nostrand Reinhold Co, 1989.

[6] S. Lauesen, Software requirements: styles
and techniques: Addison-Wesley, 2002.

[7] N. Heumesser, et al., "Essential and
requisites for the management of evolution
- requirements and incremental validation,"
Information Technology for European
Advancement, ITEA-EMPRESS
consortium2003.

[8] N. Yusop, et al., "The impacts of non-
functional requirements in web system
projects," International Journal of Value
Chain Management vol. 2, pp. 18-32,
2008.

[9] K. E. Wiegers, Software requirements, 2nd
ed. Washington: Microsoft Press, 2003.

[10] B. Boehm and H. In, "Identifying quality-
requirements conflict," IEEE Software,
vol. 13, pp. 25-35, 1996.

[11] D. Mairiza, D. Zowghi, N. Nurmuliani,
"Managing conflicts among non-functional
requirements," in 12th Australian
Workshop on Requirements Engineering
(AWRE '09), Sydney, Australia, 2009.

[12] L. Chung, et al., "Dealing with change: an
approach using non-functional
requirements," Requirements Engineering,
vol. 1, pp. 238-260, 1996.

[13] B. Curtis, et al., "A field study of the
software design process for large systems,"
Communication of the ACM, vol. 31, pp.
1268-1287, 1988.

[14] B. Boehm and A. Egyed, "WinWin
requirements negotiation processes: a
multi-project analysis," in 5th International
Conference on Software Processes, 1998.

[15] A. Egyed and B. Boehm, "A comparison
study in software requirements
negotiation," in 8th Annual International
Symposium on Systems Engineering
(INCOSE’98), 1998.

[16] W. N. Robinson, et al., "Requirements
interaction management," ACM Computing
Surveys, vol. 35, pp. 132-190, 2003.

[17] B. Boehm and H. In, "Aids for identifying
conflicts among quality requirements,"
IEEE Software, March 1996, 1996.

[18] H. In, et al., "Aplying WinWin to quality
requirements: a case study," in 23rd
International Conference on Software
Engineering, Toronto, Ontario, Canada,
2001, pp. 555 - 564.

[19] A. Egyed and P. Grünbacher, "Identifying
requirements conflicts and cooperation:
how quality attributes and automated
traceability can help," IEEE Software, vol.
21, pp. 50 - 58, 2004.

[20] Y. Guan and A. K. Ghose, "Use constraint
hierarchy for non-functional requirements
analysis," Lecture Notes in Computer
Science, vol. 3579/2005, pp. 104-109,
2005.

[21] D. Mairiza and D. Zowghi, "Constructing a
catalogue of conflicts among non-
functional requirements," in Evaluation of
novel approaches to software engineering:
Springer-Verlag, 2011.

[22] D. Mairiza, D. Zowghi, N. Nurmuliani,
"An investigation into the notion of non-
functional requirements," in 25th ACM
Symposium On Applied Computing
Switzerland, 2010.

[23] D. Mairiza, D. Zowghi, N. Nurmuliani,
"Towards a catalogue of conflicts among

non-functional requirements," presented at
the 5th International Conference on
Evaluation of Novel Approaches to
Software Engineering (ENASE 2010),
Athens, Greece, 2010.

[24] D. Mairiza and D. Zowghi, "An
ontological framework to manage the
relative conflicts between security and
usability requirements," in The Third
International Workshop on Managing
Requirements Knowledge (MaRK 2010), in
conjunction with the 18th IEEE
International Requirements Engineering
Conference (RE’10), Sydney, Australia,
2010.

[25] R. Kishore, et al., "A helix-spindle model
for ontological engineering,"
Communication of the ACM, vol. 47, pp.
69-75, 2004.

[26] H. A. Simon, The science of the artificial,
3rd ed.: MIT Press, 1996.

[27] D. Mairiza, "Security usability conflict: a
preliminary experiment," presented at the
First CCF SIGRE Workshop 2011,
Beijing, China, 2011.

[28] D. Mairiza, "Non-functional requirements
in software development projects: a
systematic review," presented at the ACS –
BRASIG 29 September 2011, Sydney,
Australia, 2011.

[29] D. Damian, "Empirical studies of computer
support for distributed requirements
negotiation," University of Calgary, 2001.

