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Abstract—Traceability among requirements artifacts (and be-
yond, in certain cases all the way to actual implementation) has
long been identified as a critical challenge in industrial practice.

Manually establishing and maintaining such traces is a high-
skill, labour-intensive job. It is often the case that the ideal
person for the job also has other, highly critical tasks to take
care of, so offering semi-automated support for the management
of traces is an effective way of improving the efficiency of the
whole development process.

In this paper, we present a technique to exploit the information
contained in previously defined traces, in order to facilitate the
creation and ongoing maintenance of traces, as the requirements
evolve. A case study on a reference dataset is employed to
measure the effectiveness of the technique, compared to other
proposals from the literature.

I. INTRODUCTION

In a talk at RE’2003 about measuring the mismatches
between areas of interest of researchers and practitioners in
RE [1], Martin Feather lamented requirements traceability as
a practically important yet under-served area of RE research.
In the 10 years since, his call has been taken up by several
groups of researchers, and numerous techniques to help provide
automatic or semi-automatic support for the establishment and
maintenance of traces between requirements artifacts have
emerged.

Early proposals have drawn mostly from the repertoire of
Information Retreival (IR) techniques (e.g., using Vector Space
Model and TF-IDF approaches), essentially positing that lexical
similarity between two documents (or fragments thereof, e.g.
single requirements) is a strong indicator that the two should
be linked in a traceability relation. These approaches, while
useful and reasonably effective as an initial attempt, suffered
from certain limitations, namely:

1) They ignore the different nature of different relationships
between requirements. A trace can embody a technical
refinement, a goal-means relationship, a make-break
relationship, a requirement-test, etc., but the only criterion
considered is the occurrence of the same terms in the
two artifacts.

2) They ignore that artifacts of different nature can employ
different sublanguages — for example, marketing terms
on one side, technical jargon on the other. In such
circumstances, relying on lexical similarity will yield
unsatisfactory results.

3) They do not leverage the effort already put into estab-
lishing links. In effect, every new artifact is treated as
a fresh new query into an IR system, with the results
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used as candidate for establishing traces, and with no
memory of the past.

To overcome these limitations, more recent approaches have
applied Machine Learning (ML) techniques instead of or in
addition to classical IR techniques. In general terms, ML
approaches seek to extract information from pre-existing traces,
use the information to build a model of the previous linking
patterns, and leverage the model in suggesting candidates for
future traces. Such techniques help overcome limitations 1)
and 3) mentioned above, in that the future suggestions tend to
mimic as far as possible what already had been done manually
in the past, thus leading to an efficient re-use of the effort and
knowledge put into establishing an initial set of traces.

As an aside, it should be noted that the pre-existing traces
are not necessarily the “perfect” ones. It is entirely possible that
an automated technique can identify relevant traces that had
been missed by the human analyst. However, given the current
state of the art, human analysts tend to be significantly more
effective at establishing traces than existing algorithms, when
traceability is considered at all. Indeed, in common industrial
practice — and especially in small-to-medium enterprises — the
real problem seems to be having any traceability in place at
all, rather than having a perfect set of traces.

In this work, we focus on limitation 2) above, i.e. on those
cases where different terms, choice of wording, style and level
of abstraction are used in diverse, but related, requirements
documents that need to be linked. Typical examples include
linking marketing requirements to technical specifications, or
business goals to requirements and to use cases or scenarios.
At the same time, we apply the general framework of ML
approaches, thus addressing 1) and 3) as well. Results show
that even simple techniques can be remarkably effective in
assisting a human analyst in the task of establishing traces.

Our main contribution in this work is a simple technique
based on the concept of affinity, which is a measure of how the
occurrence of certain pairs of terms increases the likelihood that
two requirement artifacts should be linked, based on historical
data. We formally define the problem of incremental traces
construction, propose a solution based on affinity, and validate
the solution by means of two experiments on industrial datasets,
comparing our results with others published in the literature.

The paper is structured as follows. In Section II we lay out
our problem in formal terms, and establish needed notation.
Section III describes the technique we are proposing for
identifying candidate links, based on affinity mining; this
is followed by an account of our experimental validation in
Section IV. We discuss the applicability of the technique, and
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possible extensions, in Section V. This is followed by a review
of related work, and some conclusions.

II. PROBLEM FORMALIZATION

We consider a scenario in which two sets of textual artifacts,
each consisting of a single unit which we will call without loss
of generality' a requirement, are to be linked with each other
by means of traces of unspecified (but homogenous) semantics.
A trace between two requirements means that the two of them
are related according to the considered semantics.

Due to historic usage, we will call the two sets of re-
quirements H (for: high-level) and L (for: low-level), with
H = {hi,...,h,} and L = {l4,...,l,,}. The traces E =
{e1,...,ep}, where each e, = (h;,,l;, ) are thus the edges of
a bipartite graph G = (HU L, E).

The problem we want to address can then be formalized as
follows: given a current (non-empty) set of traces F, and a
new incoming requirement h’, identify a set of requirements
L’ C L such that the links (h',1"), where I’ € L', represent
the same relationship between h’ and elements of L as the
pre-existing links in E' did for elements of H and elements of
L.

A few observations should be noted. First, the problem is
stated here in terms of a new incoming &/, but its symmetrical
version with a new [’ is totally analogous. We prefer the
formulation with an incoming high-level requirement because
this corresponds to a frequently occurring situation in practice,
i.e. when a new user-level requirement is presented, and the
analyst wants to check which technical requirements are related
to the novel user request.

Second, the problem is stated in terms of the insertion of a
new requirement in H, but deletions are easily modeled (by
dropping from E all the links from or to the removed require-
ment), and edits can be modeled as a deletion followed by an
insertion”. We will discuss in Section V how such an extension
could be exploited to support traceability maintenance.

Third, in this paper we consider the simplest case with traces
between just two sets of artifacts, and simple edges between
two requirements at a time. In certain scenarios, we could find
multiple artifacts or hyperlinks instead (i.e., links between a
subset of H and a subset of L, for example when a single
marketing requirement is implemented-by a set of technical
requirements, but not by any one of them alone), or different
set of links, with different semantics (i.e., E is partitioned into
subsets Fq, ... E,, for example when certain edges represent
implemented-by whereas others represent conflicts-with). For
expository purposes, we will keep to the simplest case in
illustrating the technique, and will discuss later in Section V
how our approach could be extended to these more complex
scenarios.

ITe., we are not interested in the present work in their particular role as
goals, marketing requirements, technical requirements, bug reports, etc.

2As a minor technical detail, in a real system the knowledge extracted
from links that are dropped following a deletion should be preserved, whereas
knowledge extracted from links that are explicitly deleted should be discarded,
since in that case it is the trace itself that has been deemed invalid.

III. PROPOSED TECHNIQUE

In this section we will first present the intuition behind
our notion of affinity and the rationale for its application in
supporting the establishment of traces between requirement
artifacts. We will then provide a technical description of the
operations to be performed during the training phase (when
affinity values are mined from pre-existing traces) and during
the application phase (when mined affinity values are used to
suggest candidate links for a new incoming requirement).

A. Rationale

In most practical cases, the information that is carried by the
establishment of a link between two requirements expresses the
fact that the linked requirements predicates over the same or
related domain objects, or concern identical or related actions
to be performed, or they specify that the same event has to
be detected to trigger some action, etc. Such relationships are
often hinted at by lexical elements in the requirements: e.g.,
when two requirements talk about the same system component,
identified by a specific name, they are probably related.

Approximating the desired relationship by means of lexical
similarity has been found to be an effective technique in many
real-world applications (see, among others, the study on linking
marketing requirements to technical requirements in [2], [3]).
The underlying theory is that if the same terms appear in
each of the two requirements, they stand a good chance of
being related. From that theory, numerous methods based on
classical Information Retrieval techniques (such as TF-IDF [4])
have been proposed, validated via experiments, and ultimately
implemented in tools.

Those techniques, however, are applicable only when the
exact same terms are used in both H and L. In many cases, the
language used in the two artifacts tend to differ, e.g. H could
be users’ requests for new features in the software (expressed
in terms of the users’ domain vocabulary), whereas L could be
technical specifications of the internal structure of the software
(expressed according to the developers’ vocabulary).

In our earlier work [5], we advocated using affinity between
terms from H and L (i.e., a measure of how frequently
requirements in which certain pair of terms occurred, were
linked in pre-existing data) instead of mere occurrence of the
same terms, in order to estimate the likelihood that a given
pair of requirements (one of them new) should be linked with
each other.

More precisely, in [5] we studied how affinity data mined
from pre-existing requirements links could provide information
about domain glossaries. Among the findings, we demostrated
on a case study that the technique found that almost 90% of
the terms used in requirements had a positive affinity towards
themselves. In other words, affinity agrees with techniques
based on occurrences of the same terms on 90% of the cases.
However, in the remaining 10% of the cases, the occurrences
of identical terms provided a negative contribution to the
likelihood of links between requirements. For those terms,
techniques such as TF-IDF would lead to a wrong candidate
being suggested. Additionally, affinity mining identified a
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r =“The DPU-TMALI shall configure the ping-pong frame
limit at startup as specified by TMALI_PP_LIMIT provided
during initialization. The default value shall be M frames
and shall be capable of being modified dynamically.”

T(r) = {TMALI_PP_LIMIT, VALU, M, LIMIT, DPU-TMAL,
DEFAULT, MODIFI, FRAME, SPECIFI, BE, DYNAM, CONFIGUR,
CAPABL, STARTUP, PROVID, INITI, PING-PONG }

Fig. 1. An example for the term-extraction function 7.

large number of pairs of different terms that had a positive
contribution to the linking likelihood, and that would be ignored
by techniques based on occurrences of identical terms. Thus,
on an artificial subset of the requirements from a publicly
available case study, selected such that the probability of a
link between two requirements would be on average 50%, our
affinity-based technique exhibited a remarkable 95.7% recall
and precision, compared to 86.5% for the standard cosine
correlation measure.

B. A Measure for Affinity

In the present work, we used a simplified version of affinity,
computed from pre-existing links as follows.

Each of the two requirements documents, H and L, is pre-
processed, and for each requirement r (either an h; or a [;)
a set of terms T'(r) = {t1,...,tp,} is extracted by means of
a standard POS-tagger®. We consider the stemmed form of
nouns, adjectives, adverbs and verbs as terms, ignoring instead
prepositions, conjunctions, disjunctions, pronouns, interjections,
particles, determiners, modal verbs, numerals, and various
punctuation. An example for 7', applied to a real requirement
from the case study described in Section IV, is shown in
Figure 1.

Since we consider sets of terms, information about the
number of occurrences is lost at this stage. More refined
measures of affinity might potentially use such information.
However, in our tests requirements were rather terse, so that
rarely a term occurred more than once in a requirement. As a
consequence, ignoring multiple occurrences does not have a
significant impact for the kind of documents we are considering.

Once T is available, affinity o between terms is computed
as follows:

Ve |J T, telJTO),

heHd leL
altn, t) =#{(W,I"Ye E|t,e T(W)Nt, e T(I")}

In intuitive terms, «(ty,t;) is a count of how many links
already exist between high-level requirements in which
occur, and low-level requirements in which ¢; occurs.

It should be noted that the measure « is a rather crude
approximation of our concept of affinity, since we simply count
the number of links already established between requirements

3As will be better described in Section IV, we used the OpenNLP suite for
linguistic processing.

that include the given pair of terms. This definition, however,
has the advantage of being easily understandable and intuitively
sound, and particularly easy to apply in practice even where
there is no sophisticated tool available for requirements
traceability*.

Another interesting observation is that o need not be
scaled according to document size, since its definition is only
significant in the context of two given requirement documents
(H and L), and hence any normalization to try to make it
independent from the the size of H and L would not provide
any real advantage.

C. Learning

Armed with the definitions above, the process of learning
affinity from pre-existing data can be simply stated. Given
two requirements documents H and L, and a set of already
established traces E, compute « for all terms appearing in
H U L, according to its definition.

The learning phase needs not be repeated from scratch every
time a change occurs in H, L or E. In fact, our definition for
« supports easy differential updating without requiring massive
recomputations. For example, if a requirement h is removed
from H, causing the cascade removal of a certain sets of
links E' C E, where e = (t),,1;) € B/ = t;, € T(h), it is
sufficient to subtract 1 to the affinity scores of all pairs (¢, ;).
In the same way, the establishment of a new link corresponds
to a simple increment of the corresponding « (¢, t;).

Such differential updates can be done in real-time. This is
important, because the technique enables taking into account
linking decisions by the human analyst immediately, e.g. when
clicking to confirm a link candidate proposed by a requirements
management tool, the sets of further candidates can be updated
accordingly to incorporate the additional information provided
by expert confirmation.

D. Application

The application scenario that we consider in this paper is
having a tool to support a human analyst in taking linking
decisions when a new requirement is considered for inclusion
in a requirements document.

Let G = (H UL, E) be the pre-existing set of traces, T be
the term-extracting function based on linguistic processing as
described above, and o 7 (-, ) be the corresponding affinity
measure.

When a new requirement, say h’, is presented for inclusion in
H, the analyst has to identify which pre-existing requirements
in L should be linked with A’. Our proposal provides a ranked
list of requirements that are candidate for linking, with the
highest-likelihood candidates (according to affinity score) at
top.

“In fact, in [5] a more sophisticated measure was defined, which included
term frequency and inverse document frequency as part of the definition.
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In detail, the rank of each [ € L in the list of candidates for
being linked to &’ is determined according to its score pp (1)

defined as
Z altn, i)

tp €T ()
tLGT(l)

pr (1) =

The human analyst can then examine the ranked list, and
confirm or reject linking suggestions according to his or her
own judgement.

For presentation purposes, the list of ranked candidates can
be limited to a certain threshold for py (1), say 7, or to a fixed
number of elements, say k. Alternatively, the list could be
returned in its entirety, and then the analyst could be instructed
to stop perusing the list after a certain number of consecutive
items are judged not suitable for linking. The most appropriate
choice for limiting the list returned can vary based on the
particular context of application, so we do not investigate here
the effect of different policies (in the next section, we will use
a variable threshold 7 for measurement purposes).

IV. EXPERIMENTAL EVALUATION

We provide an evaluation based on an experiment, with a
comparison to two other techniques proposed in the literature
for the same problem.

A. Method

Our main hypothesis is that affinity, as approximated by our
measure «, is a good predictor for whether a new requirement
should be linked to a set of pre-existing ones. The alternate
(null) hypothesis is that affinity is no better than random chance
in determining whether two requirements should be linked.

Additionally, we are interested in measuring how good our
affinity-based method fares compared to two other methods:
Vector Space model (weighted according to TF-IDF) [4], and
Reinforcement Learning [6].

Our reference for a correct set of links will be the judgement
of an experienced analyst, familiar with the problem. To remove
any threat of researcher bias, we use a dataset (both H and
L requirements, and a set of manually-established traces F)
that were developed independently from the current research
endeavour. To facilitate comparison with other techniques, we
use a dataset that has been developed in an industrial context
and that has been used by other researchers in other traceability-
related studies.

All computations are performed by computer programs
implementing the various formal definitions from Sections II
and III, thus reducing the threat of clerical errors in processing
the data.

Being based on a single experiment, our method could refute
our main hypothesis in case of failure, but in case of success
cannot prove the generalizability of our proposed technique
to different datasets or contexts. Thus, results can serve as a
first indication of effectiveness, but a larger, systematic study
would be needed to ultimately prove its wider applicability.

B. Experimental Design

1) Dataset: We used a published dataset for CM-1, a
scientific instrument (to be carried onboard a satellite) whose
requirements were developed by NASA and made available to
the scientific community as part of the NASA Metrics Data
program.

The full dataset consists of numerous documents, including
defect reports with links to code artifacts. For our study, we
considered two textual documents: a Requirements document
(our H) consisting of 235 requirements, mostly 1-3 paragraphs
long, and a Design document (our L) consisting of 220 design
description statements. A total of 361 links were manually
established between these two documents. The full dataset has
a very low link density: of 51700 possible pairs (h,!), only
361 (0.7%) were correct links.

For the purpose of comparing to the Reinforcement Learning
method from [7], we measured the performances of our Affinity
method on a subset of the full CM-1 requirements, the same
subset used in [7] and there named CM1SUB. This reduced
dataset consists of 22 high-level requirements (H) and 53 low-
level design statements (L), linked by a total of 45 links (F).
CMI1SUB has a slightly higher link density (3.9%) compared to
CM-1, yet the task of automatically identifying the 45 correct
links among the 1166 possible pairs remains challenging.

2) Linguistic Processing: We used the OpenNLP toolset [8]
for the needed preprocessing at the linguistic level. OpenNLP
can be configured for specific applications by training it on
a given corpus; however in our experiment we wanted to
simulate the situation where no special knowledge about the
requirements language, style or domain is needed beforehand.
Hence, we used the standard models for English distributed with
OpenNLP itself for sentence detection (used, for example, to
distinguish when a dot is just part of an abbreviation, or when it
indicates a full stop ending a sentence) and rokenization (used to
identify lexically significant chunks of text inside a sentence).
After sentence detection and tokenization, a requirement r
(either from H or L) consisted of a sequence of sentences,
each consisting in a sequence of lexical tokens.

Part-of-speech tagging was performed on each sentence
by using OpenNLP’s maximum entropy POS tagger, which
classifies tokens according to a slightly enriched variation of
Penn’s Treebank set [9]. As we described in Section III-B, only
tokens classified as nouns, adjective, adverbs and verbs were
considered; tokens in other classes were ignored and discarded
at this stage. Moreover, the filtered sequence of tokens was
flattened into a set at this stage, eliminating duplicates.

As a last step, stemming was performed by applying the
popular Porter’s stemmer [10] to the set of tokens, thus
completing the calculation of T'(r). See Figure 1 for an example
of the results of the whole process.

3) Building the Affinity Model: The affinity model (i.e., the
values for a(-,-)) is obtained by a straightforward implemen-
tation of the definition. In particular, all pre-existing traces are
considered in sequence. For each trace e = (h,l) € E, the
affinity value between all terms in 7'(h) and all terms in T'(1)
is incremented by 1 (starting at 0).
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It may be observed that while a simple increment by 1 may
seem simplistic, in practice what we obtain is a count of how
many links exist in the given data set between requirements
containing at least one occurrence of the given terms. Since the
actual values of «(-,-) are only used for comparison purposes,
i.e. in ranking the list of candidates, their value is immaterial,
and any more complicated function that still preserves the
ordering would have no net effect on the results. On the other
hand, we would be very wary of any function that does not
preserve the ordering, i.e. one that would rank a pair of terms
appearing in fewer links as more tightly related than another
pair that appear in more links. Thus, a principle of economy
leads us to stick with the simpler formulation.

4) Identifying Candidate Links: Once «(-,-) is mined from
the data, identifying candidates for linking is simply a matter of
computing the cumulative affinity score for two requirements,
the new one h* (to be inserted in H), and the pre-existing
ones | € L.

Again, the process involves a straightforward implementation
of the definition of pp«(-). This is obtained by first computing
T (h*), then summing, for each I, the affinity measure of each
pair of terms from 7'(h*) and T'(1).

In this case, too, we could perform a normalization step;
however since values of p,«(l) are only used to rank different
ls, and only in the context of the same h*, normalization is
not needed.

In order to keep the sets of candidates manageable by
the analyst, we used a parametric threshold 7: any pair
(h*,1) with pp+(l) < 7 would not be included in the list
of candidates. All pairs above the threshold would be included,
with an understanding that pairs with higher p values would
be presented in a more prominent role (e.g., at the top of a
list) to the user for validation.

5) Measuring Results: In order to measure the quality of
the candidate links, we resorted to the classical Information
Retrieval measures of precision and recall, computed in a
k-fold validation scheme. More precisely, we performed 22
measures; on each measure, a different requirement h* was
removed from H, and all the links (h*,1), with [ € L, were
removed from E.

The system was then trained on the remaining data, consti-
tuting a reduced dataset G*, and the corresponding ag+ 7 (-, )
measure was computed for all remaining pairs. We then
simulated the arrival of the “new” requirement h*, computed
the ranked list of suggested candidate links according to pp+(-),
and measured precision and recall of that list compared to the
correct set of links (those that were removed from FE). The
results were then averaged over the 22 instances.

In some practical cases, the quality of the topmost (i.e.,
highest ranking) candidates would be more relevant than those
of the candidates further down in the list. This happens,
for example, when the semantics of links is something like
duplicate-of; simply finding that a user request (or bug report)
is a duplicate of a pre-existing (and already accepted) feature
request, is sufficient to decide whether the new requirement
should be considered for inclusion or not. In other cases, though,

the aim is to find all significant links, e.g. when the semantics
is, say, contributes-to-goal or blocks-implementation-of.

In our experiments, we adhered to the second (and more
taxing) model, i.e. the aim was to find all relevant links, not
just one or a few of the “best” ones. Accordingly, we measured
precision and recall comparing the full set of candidates
(truncated based on a threshold 7) to the full set of manually
established links for each requirement h*. Moreover, to study
how the choice of 7 affects results, we considered different
values for 7, evenly spaced in 20 steps between the minimum
and maximum value of p returned for a given h*.

Let us call ES(h*) the list of candidates (h*,1) (with
pn+(l) > 7) returned by our method, and E9(h*) the set
of manually-established links in the original £ (mnemonic:
superscript ¢ for candidate, g for gold set).

For each value of 7, we considered a true positive any
link that was suggested as a candidate by our technique and
was also manually established in the original data, and a true
negative any link that was neither suggested as a candidate by
our technique, nor present in the manually-established links.
Conversely, a link suggested by our technique but not manually
established in the original data would be considered a false
positive, and a link that was manually established, but not
returned as a candidate, would be a false negative.

These four sets can be defined formally as follows:

TP = ES(h*)NE9(h")

TN = {(h*,1)|leLAR"1)¢E(h")UEI(h)}
FP = {(h",0)|le LA(h*1)eE(h*)\ E9(h")}
FN {(h*,1) | 1 € LA(R",1) € E9(h*)\ ES(h*)}

Precision and recall (at threshold 7) are thus defined as
usual; moreover since we are essentially conducting a binary
test, we can also measure accuracy, e.g. how many of our
classifications (true positives or true negatives) are correct, as
a proportion of all possible tests. Another useful measure that
combines precision and recall by computing their harmonic
mean is the F-score’; this can be useful as a synthetic indicator
of overall effectiveness of a classification method.

Formally, these measures are given by

p #TP
"¢ T YTP L #FP
#TP
Rec = —————
#TP+ #FN
Aee — #TP + #TN
#TP+ #TN + #FP + #FN
o . Prec- Rec
o Prec+ Rec
C. Results

We can finally present the results from our experiment
on the CM1SUB dataset, providing a comparison with other

5The F-score can be tailored to assign different weight to either precision
or recall. Here we used the balanced F-score, also called F'1, that weights
them equally.
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TABLE I
RESULTS FROM THE EXPERIMENT ON THE CM1SUB DATASET, AT VARYING
THRESHOLDS.

T Prec  Rec Acc F #P
0% 0.051 1.000 0.055 0.10 40.0
5% 0.078 1.000 0.396 0.14 263
10% 0.108 0956 0594 0.19 182
15% 0.174 0911 0.775 029 10.7
20% 0.255 0.867 0.864 0.39 7.0
25% 0.358 0.867 0914 0.51 5.0
30% 0.515 0.778 0951 0.62 3.1
35% 0.611 0.733 0963 0.67 2.5
40% 0.727 0.711 0972 0.72 2.0
45% 0.853 0.644 0976 0.73 1.6
50% 0.880 0.489 0971 0.63 1.1
55% 0.882 0333 0964 048 0.8
60% 0.857 0267 0.960 0.41 0.6
65% 1.000 0.178 0.958 0.30 0.4
70% 1.000 0.089 0954 0.16 0.2
75% 1.000 0.067 0952 0.13 0.1
80% 1.000 0.044 0951 0.09 0.1
85% 1.000 0.044 0951 0.09 0.1
90% 1.000 0.044 0951 0.09 0.1
95% 1.000 0.022 0950 0.04 0.0
100% 1.000 0.022 0950 0.04 0.0

approaches, and on the full CM-1 dataset, which more faithfully
represent a larger traceability context

1) CMISUB and Comparison: Table I presents the values
for our four measures at varying settings of 7 (which, we recall,
is expressed in percentiles over the range of p, and measured
at 5% intervals).

The results are quite satisfying, with accuracy peaking at
7 = 45% on a value of 0.976 (that is: 97.6% of all classification
decisions are correct). On a highly skewed data set as our
CMI1SUB, accuracy alone does not provide a full assessment:
in fact, a trivial classifier that would simply return no candidates
at all for any new incoming requirement, always answering
“no” so to say, would still be right 96.1% of the times on
CMI1SUB (and a full 99.7% of the times on the entire CM-1
dataset!). However, our affinity-based technique also exhibits
an F score of 0.73 at 7 = 45%, with 85% precision and 64%
recall, whereas the trivial classifier mentioned above would
return no true positives, and hence would have 0% precision
and recall.

Another positive feature that can be observed in Table I is
that precision and recall are not overly sensitive to the exact
value of 7, and thus the exact value of the parameter is not
critical. Any value of 7 between 40% and 60% would yield
approximately 75%-85% precision, and any value between
20% and 40% would yield approximately 70%-85% recall. As
usual, increasing precision values tend to decrease recall, and
vice versa.

To give an idea of the cognitive burden placed on the analyst
that has to browse the list of candidate links, in order to judge
which ones are worthy of establishing, the last column in
Table I reports the total number of positives returned (#P =
#T P+ #FP), i.e. the size of the list of candidates presented
on average for each new incoming requirement.

At 7 = 0%, there is of course very little selection, and
the technique identifies 40 of 53 low-level requirements as
candidates for linking. Needless to say, presenting 75% of all
possible link targets is not particularly useful: it might be easier
to just consider all 53 low-level requirements, and at least rely
on some guarantee of completeness.

But already at 7 = 15%, only around 10 requirements are
presented, which on average include over 90% of the real
links. Roughly speaking, since on average each high-level
requirement in CM1SUB is manually linked to just above
2 low-level requirements, and we have a recall of 0.91, this
means that the analyst will have to distinguish among the
10 candidates between 2 real links, to be confirmed, and 8
false positives, to be discarded. Only in less than 10% of the
cases the list of 10 candidates will not include a relevant link.
For non-critical applications, this seems a good compromise
between effort spent in confirming link candidates, and level
of completeness of the recovered links: the technique saves
75% of the effort, at the cost of a risk of not identifying 10%
of the links that would be established (at four times the cost)
in the case of a complete analysis of all low-level requirements
for each new incoming high-level requirement.

The exact way precision and recall are related can be
visualised by plotting them on a precision-recall graph (see
Figure 2), which we also use to compare the effectiveness
of our affinity-based proposal to TF-IDF and Reinforcement
Learning (RL).
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Fig. 2. Precision-Recall curve for Affinity, compared to TF-IDF and

Reinforcement Learning, CM1SUB dataset.

The Affinity graph shows how precision is essentially stable
for our technique for a large range of recall values (from 0.3
to 0.65), with a optimal spot around recall 65% and precison
0.85%. This corresponds to the optimal 7 = 45% that we had
already identified in Table I.

More interestingly, it appears that Affinity substantially
outperforms both TF-IDF and Reinforcement Learning®.

While reinforcement learning is still a relatively novel
approach in traceability research, and thus its effectiveness is

SFor the latter two methods, numerical data was obtained from [11]; the
resulting diagram is essentially the same as the one shown in Figure 6 in [7].
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not yet well established, it is somewhat surprising that Affinity
performs so much better than TF-IDF. However, we should
consider that Affinity implicitly identifies and incorporates the
relationship between occurrences of identical terms that is at
the hearth of TF-IDF, while discarding those terms that present
no evidence of being related in pre-established traces, despite
occurring in multiple requirements, and adding those terms
that are not identical, but frequently occur in linked pairs of
requirements.

For example, Affinity identifies that high-level requirements
containing the word BUFFER are often linked to low-level
requirements containing BUFFER, just as TF-IDF would
suggest. But in addition, it also identifies that high-level
requirements containing COMMAND are even more frequently
(actually, two times more frequently) linked to low-level
requirements containing TASK, an association that TF-IDF
would be unable to make. In a similar vein, Affinity is able
to mine from pre-existing data that ERROR is often related
to ENQUEU (the stem for fo enqueue), which derives from
the specific way errors are handled in the CM-1 system, and
could not be derived by purely lexical means without looking
at pre-established traces.

2) CM-1 and Scalability: The CM-1 dataset, with its larger
size and lower link density, poses additional difficulties for an
automated selection of candidate traces.

CM-1 has six times more requirements compared to
CMI1SUB. What is worse, since the number of potential links
grows quadratically with the number of requirements, there
are 44 times more potential links, and only 8 times more
correct links. It is thus to be expected that the performance
of any technique aiming to support traceability would drop
considerably on larger datasets. Indeed, as Figure 3 shows,
Affinity on CM-1 performs worse than on CM1SUB: but not
dramatically worse. The optimal compromise here is slightly
lower: the best value for F' is found at 7 = 50% (pleasantly
close to the optimum for CMISUB, which was found at
7 = 45%), with 77% precision and 63% recall.
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Fig. 3. Precision-Recall curve for Affinity on two different datasets: CM1SUB
and CM-1.

Apparently these values are comparable to the 85% precision
and 64% recall we had found for CM1SUB. But we have

to remember that these numbers represent slightly lower
percentages of a much larger base value,and that the amount
of effort that can be put in selection does not scale linearly
(or, in other words: the human analyst has a limited capacity
for attention and time that can be spent in examining trace
candidates). As an example, for CM1SUB we hypothesized
that 90% recall could be a target (i.e., the risk of missing 10%
of the links was acceptable), and that lead to 17% precision,
meaning that on average, the analyst had to find the 2 true links
amidst 10 candidates. For CM-1, the same level of recall would
lead to a precision of 8%, half what we had for CM1SUB.
In other terms, the analyst has to find 1 true link amidst 10
candidates (a task that could be deemed twice as difficult to
get right).

In most contexts, scalability would thus be an issue: while
the theoretical performances of the approach are still good, and
the computational cost is negligible (see Table II), in practice
the attention span of the analyst can be a limiting factor.

TABLE II
COMPUTATION TIMES FOR VARIOUS STAGES OF THE AFFINITY TECHNIQUE,
ON A COMMODITY PC.

Operation Time (secs)
Initializing OpenNLP components 2.7
Loading and stemming specifications 5.5
Building affinity model 2.1
Testing and computing measures 0.6

V. DISCUSSION AND APPLICABILITY
A. Generalizability and Tuning

The experimental results reported above support our main
hypothesis, that Affinity can be an effective technique to
identify candidate links in an ongoing requirements traceability
process.

Of course, it would be quite daring to generalize from those
experiments, only two, limited in size, and in the context of
the same project, to all possible practical scenarios. The CM-1
dataset in fact exhibits certain peculiar properties (e.g.: highly
stylized language, abundance of acronyms, rigorous naming
conventions, high degree of textual polish of the requirements)
that are all but universal in requirements documents. Hence,
we do not claim generalizability beyond what the experiments
have demonstrated.

Still, we see these results as a clear indication that relaxing
the hypothesis that artefacts to link are homogeneous in
language and vocabulary, can not only not be detrimental, but
even improve the effectiveness of certain automatic techniques.
Classical IR techniques developed for a scenario where queries
were expressed in the same language as the documents to be
retrieved, do not transition gracefully to software development
scenarios, where links span vastly different categories of arte-
facts (e.g., from test cases to code). Even among requirements
documents, authors and purpose can be so different that linked
elements have often little lexical content in common.

The affinity concept can be applied in different ways, and
extended to accommodate different needs. For example, links
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representing different semantic relationships could be treated
separately, and a special affinity score computed for each
category. This view also accommodates bidirectional linking
(e.g., traces between multiple versions of the same requirement
in time, with forward traces meaning evolved-into and backward
traces meaning originates-from).

Similarly, the exact way a requirement artefact is mapped
to a set of terms is largely parametric. In our experiments,
the mapping function 7" was based on standard linguistic
processing. But if one were to apply affinity to program code,
T could be implemented as a function to transform a unit of
source code such as a function, class, or module, into a set of
tokens (say: names of local variable, methods, etc.). The basic
idea of mining previous knowledge encoded in pre-existing
traces would still be applicable.

A number of different parameters and tools could be tuned,
including the details of the linguistic processing steps (our
T, the exact operational definition of a measure for affinity
between terms (our «), or the way affinity between terms is
combined to establish a ranking between candidate links (our p).
In the present work, we have chosen the most basic options for
each of these, in order to avoid complicating the presentation.
However, in experimenting with alternative options (e.g.: using
non-linear combinations for p instad of simple summation, or
considering multiplicity in the set returned by 7 instead of a flat
set of terms, or only considering affinity for values of o above
a certain threshold, or adding a penalty for identical terms that
were not linked, etc.), we have observed that the technique
tends to be remarkably stable with respect to such changes. As
we have already observed, the deciding factor is the relative
ranking of candidate links, and the value of the threshold 7.
The first is preserved by most reasonable alternatives, and the
second was found experimentally to be not particularly critical
in a large range of values. We thus anticipate that our results
would survive small changes to the parameters or source data.

B. Other Application Scenarios

For expository purposes, we have framed our reference
problem (Section II) in terms of an incoming new high-level
requirement that has to be linked to pre-existing low-level
requirements. This, however, is just one of the many potential
application scenarios. In a more general view, affinity mining
can be seen as a tool to be employed, among others, in the
wider traceability maintenance picture.

In maintaining a set of traces, the various sets of artifacts (and
the traces themselves) are assumed to evolve independently;
the challenge is then to keep the traces up-to-date with the
changes, spending as little human effort as possible. In this
more complex setting, the knowledge extracted from established
(and confirmed) traces needs not be discarded when the artifacts
they used to link evolve. Once a confirmed link has established
evidence that, say, “COMMAND” has high affinity to “TASK”
(see Section IV-C1), this affinity score might well survive the
removal of a requirement about one such command. Hence, in
traceability maintainance the knowledge about affinity has to
be maintained independently from its sources; the approach

would be more focused towards glossary construction and
maintenance, with the affinity glossary being an independent
repository, rather than a derived property of the pre-existing
traces themselves.

We have not explored the maintenance setting in this work,
choosing instead to focus on the simpler case with a stream of
incoming new requirements. The basic case also lends itself
well to investigation of application scenarios where affinity data
is used, interactively, to support the writing of new requirements.
For example, we could envision a scenario where upon arrival
of a new high-level requirement, after checking that it is not a
duplicate or already implemented, a corresponding new low-
level requirement has to be written. An editing tool could then
subtly suggest (e.g., as part of a word-completion functionality)
those low-level terms that are already known to have high
affinity with terms appearing in the text of the new high-level
requirement.

In general, affinity could be used as a substitute or additional
measure of relatedness between artifacts in a variety of contexts,
beside the main one we discussed in this paper. We plan to
investigate its effectiveness in those different roles as part of
our future work in this area.

C. Threats to Validity

We have designed our experiments with a view to eliminate
or mitigate most threats to validity; yet there are a number of
threats that we could not eliminate.

Among the internal validity threats that we tried to address
we can cite selection bias (the data set was selected based on
its availability and previous usage by other researchers, and not
based on the peculiar needs of our technique) and time-related
effects such as memory, maturation, and repeated testing. In
our design, the only human intervention happened well before
the technique was developed, namely when the reference set
of traces was manually defined by a human expert, and there
could be no influence by the researchers on the original authors
of the data set.

External validity is more problematic, since we only have
experimental results from a single project, in two different data
sets. Further experiences, and possibly replication studies, are
needed before any claim of generalizability can be made.

There is also a threat about content validity, in that our
measures (precision, recall, etc.) may not be able to capture
those features that are really relevant for the analyst. Other
factors (e.g., ease of use of an implemented tool) may play an
important role, in that an analyst may be unwilling to spend
much time working with an awkward tool, or be ineffective at
link selection because of some user interface problem. However,
those measures that we have used have been proven historically
to correlate well with user’s effectiveness, and moreover provide
a convenient way to compare different techniques (each of
them, a different treatment) all else being equal. In this sense,
our comparison to TF-IDF and Reinforcement Learning in
Section IV provides solid evidence that Affinity is, among the
three treatments we considered, the one providing the best
performances on the same data.

150



For a single experiment, there is no issue of statistical
validity; hence we have not endeavored to perform statistical
significance tests on our results. In a future study, measuring
performance differences on a significant number of different
datasets, it may be needed to consider statistical validity before
claiming generalizability.

VI. RELATED WORK

Among the vast scientific literature related to requirements
tracing, we consider first those works that purpose to generate
a set of candidate links for unlinked requirements.

Many early works advocated a direct application of clas-
sical Information Retrieval techniques, such as Vector Space
Model (VSM) weighted by text frequency - inverse document
frequency (TF-IDF) (among others, [12], [13], [2]). These
techniques assumed to start with a clean slate, that is, from
artifacts that were not linked at all; the problem was then to
generate an initial set of links for the whole set of documents.
Since no information other than the documents themselves
was available, only lexical similarity was used in generating
candidate links, and their applicability was restricted to artifacts
that used the same vocabulary. In contrast, our proposal mines
pre-existing links for context-dependent information, that is
then used to relax the restriction that all artifacts should use
the same vocabulary.

The limitations stemming from sole reliance on lexical
content was quite rapidly felt. A successive stream of research
tried to use Latent Semantic Analysis (in a static context as
in [14] or in an evolutionary perspective as in [15]), or explicit
dictionaries, thesauri or glossaries prepared for traceability
purposes by a domain expert; the value of such a document was
highlighted by several researchers as an important supplement
to VSM-based techinques, e.g. [13]. In a sense, our approach is
closer to this second strain, except that the vocabulary (relating
the language used in one artifact, to a potentially different one
used in another artifact) is inferred from pre-existing traces,
rather than prepared by a domain expert. A similar idea has
been recently advocated in [16], where an automated thesuarus
builder is used in support to link generation.

Another idea for improving over the basic VSM model that
has been proposed concerns using the location of terms, either
to define a sort of local neighbourhood [17], or to assume
n-grams as the unit of lexical reference, and sliding windows
as the unit of relevance for linking purposes [18]. We have
not addressed location of terms in our proposal: in fact, we
explicitly discard any positional information in the computation
of T'. While positional information could potentially be useful,
not just in terms of location, but also in terms of syntactic
roles of the various terms, we have not considered the issue
in this work. On the other hand, n-grams could be easily
(and maybe more effectively) modeled by using even a basic
nominal grammar in 7", for example to assemble noun phrases,
instead of considering each term on its own. We intend to
investigate the issue in future studies.

The limitation of purely lexical approaches have been
identified by several researchers. As a consequence, in more

recent times a systematic exploration of the applicability of
Machine Learning techniques to the requirements traceability
problem has been initiated.

The various ML approaches are so diverse that we cannot
conduct a full survey here; we will simply mention a few of
the most relevant ones. Already in 2004, ML was advocated as
an alternative to lexical based techniques [19]. More recently,
various ML techniques such as swarm intelligence [20] and
reinforcement learning [7] have been applied; these are the
research efforts that are closest in spirit to our own, and the ones
we used for a comparison in Section I'V. Reinforcement learning
in particular was applied first to recover traces from normative
codes (i.e.: standards, laws, regulations) to requirements in [21],
where the technique was found to be particularly effective for
the specific context. This might be in part due to the stable
nature of one of the two sets of artifacts (the regulations), which
are supposed to be the same over long periods of time and
across different projects, thus providing good opportunities for
reinforcement learning. In contrast, our affinity based approach
is completely symmetric, and it is not expected that variability
will occur on one class of artifacts only.

While all of the ML approaches assume either a given
“golden” dataset to train a classifier of sort, or a given “oracle’
to serve as a utility function (e.g., in approaches based on
genetic algorithms, such as [22]), not all of them consider the
ongoing evolution of multiple sets of artifacts as a source for
traceability information, as our approach does. Traceability in
an evolving context is thus the second major area of research
which we briefly survey.

s

An adaptation of static IR techniques to the evolving context
is presented in [23] (and more extensively in [24]), where
different strategies are introduced and evaluated on a set of
cases. A more thorough treatment, focusing on modeling the
problems involved in trace evolution in addition to proposing a
technical solution, is given in [25] in the context of traceability
between requirements and design elements. Interestingly, [25]
explicitly disclaims applicability to the initial construction of
a set of traces, suggesting instead to use IR and data mining
techinques for that. In contrast, we propose using IR and data
mining techniques as part of ongoing evolution, and assume
that the bootstrap is given by manually-established links (or,
by traditional lexically-based IR techniques).

A fuller view of traceability activities as parts of a larger
process is provided in [26]. In fact, our affinity-based approach
could be configured as a part of a more complex evolution
workflow, and possibly integrated with other techniques. Indeed,
a recent trend is emerging towards composing traceability
environments out of distinct components, and optimizing
the various parameters for the task at hand. In its most
sophisticate incarnation, customization of tools and parameters
is obtained by applying genetic algorithms to a configuration,
and letting the population of settings evolve until a reasonable
optimum is obtained [27]. Affinity mining could then be one
of the techniques and measures used in a rich toolbox of
complementary approaches.
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VII. CONCLUSIONS

We have presented a technique to exploit the information
contained in previously defined traces among a set of software
requirements, in order to facilitate the creation and ongoing
maintenance of the traces as the requirements evolve, new
requirements are defined, or old ones are edited or deleted.

The results from our experiments show that the proposed
technique, based on a measure of affinity between pair of terms
that embodies the likelihood that the terms will appear in
requirements that are linked with each other, is substantially
more effective than TF-IDF, in particular in cases where the
artifacts to be linked employ different languages, jargon, or
domain vocabularies. This is a frequently occurring scenario
in many software development processes, e.g. when there is a
need to link users’ requests for new features (expressed in the
users’ jargon) to technical requirements (as written by analysts
and developers) that implement them.

We also compared the effectiveness of our approach with a
ML technique based on Reinforcement Learning, again finding
substantial improvement.

While no claim of generalizability can be made at this stage,
we believe that further studies will draw a large scope for
affinity-based techniques, in specific contexts.

This work has revolved around proving the viability of
the basic technique. As part of future work we intend to
investigate the improvements that can be obtained by more
refined linguistic processing, as well as testing the technique
on a wider variety of scenarios.

Our validation has been entirely technical so far. This is both
an advantage (in that the experiments are fully replicable, and
there is no human variability involved), and a disadvantage (in
that we have not considered human factors that might impact
the practical usability of the technique). Hence, an avenue for
further improvement is certainly deploying our technique in the
context of a live industrial project, in order to gather first-hand
users’ feedback.
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