A Logical Approach to Cooperative
Information Systems

Elisa Bertino Barbara Catania

Dipartimento di Scienze dell’Informazione, University of Milan, Italy

Vincenzo Gervasi Alessandra Raffaeta

Dipartimento di Informatica, University of Pisa, Italy

Abstract

“Cooperative information system management” refers to the capacity of several
computing systems to communicate and cooperate in order to acquire, store, man-
age, query data and knowledge. Current solutions to the problem of cooperative
information management are still far from being satisfactory. In particular, they
lack the ability to fully model cooperation among heterogeneous systems accord-
ing to a declarative style. The use of a logical approach to model all aspects of
cooperation seems very promising.

In this paper, we define a logical language able to support cooperative queries,
updates and update propagation. We model the sources of information as deductive
databases, sharing the same logical language to express queries and updates, but
containing independent, even if possibly related, data. We use the Obj-U-Datalog [5]
language to model queries and transactions in each source of data. Such language
is then extended to deal with active rules in the style of Active-U-Datalog [4,22],
interpreted according to the PARK semantics proposed in [23]. By using active rules,
a system can efficiently perform update propagation among different databases. The
result is a logical environment, integrating active and deductive rules, to perform
update propagation in a cooperative framework.

Key words: Deductive databases, Active rules, Heterogeneous databases,
Cooperation.

1 Introduction

The evolution of current information processing systems towards larger and
more heterogeneous systems has made evident the strong need for systems

Preprint submitted to Elsevier Preprint 21 December 1998

and tools enabling cooperative information system management. Cooperative
information system management refers to the capability of several computing
systems to communicate and cooperate in order to acquire, store, manage,
query data and knowledge. Many application environments, such as workflow
management systems, telecommunications network management, digital li-
braries, health-care provisioning and monitoring, strongly need tools enabling
cooperative flows of information among their data management systems.

The development of a cooperative information management system entails ad-
dressing different problems, ranging from the differences in hardware/software
platforms, to heterogeneity in the database management systems (DBMS), to
semantic data heterogeneity, to operational issues such as update propagation
and consistency maintenance for related information. Solutions to these prob-
lems are provided by efforts in different areas. In particular, hardware/software
heterogeneity issues are investigated in the areas of communication networks
and operating systems. DBMS heterogeneity (intended as heterogeneity in
data models and in query and manipulation languages of the various DBMS)
and semantic data heterogeneity are addressed by the area of multidatabase
systems [8,40]. Operational issues have been addressed by research on trans-
action models and mechanisms [19]; also active rules have been applied to the
specific issue of update propagation [11,18,26]. A logical approach to enforc-
ing integrity constraints in an heterogeneous environment has been proposed
in [12], where temporal logic is extended to explicitly model events and dis-
tributed rules. On the contrary, in [44] consistency is not enforced, and differ-
ent databases are allowed to contain inconsistent information. A supervisory
database specifies rules to deal with conflicts as a particular case of integration
of information coming from multiple knowledge bases.

Current solutions to the problem of cooperative information management are,
however, still far from being satisfactory. In particular, they lack the ability to
fully model cooperation among heterogeneous systems according to a declar-
ative style. In most cases, solutions are based on ad-hoc application programs
acting as bridges among the various systems. In such a situation, understand-
ing which information and actions a system requires from other systems is very
difficult, especially when the number of involved systems is large. If a system
is added or removed, new bridges must be defined and analyzed. Moreover,
reasoning about the cooperative system as a whole is very difficult. This situ-
ation calls for a declarative approach allowing one to fully model all aspects of
cooperation and to provide the basis on which properties of cooperative infor-
mation systems can be proved. To this purpose, the use of a logical approach
seems very promising.

In order to model cooperative information management using a logical ap-
proach, we should be able to model:

e different sources of data, intended as different databases storing (possibly
related) data and intensional knowledge on data;

e cooperative query execution, intended as the ability of several data man-
agement systems to collectively provide information to answer user queries;

e updates on data and update propagation among the various data sources.

In this paper, we define a logical language able to support cooperative queries,
updates and update propagation. We model the sources of information as
deductive databases, sharing the same logical language to express queries and
updates, but containing independent, even if possibly related, data.

Several approaches have been proposed integrating logic and updates (see
for example [1,2,6,7,13,14,32,34,35,38,45]). The language we propose is based
on the U-Datalog language [6], and extends it with support for active rules
and with the ability to model heterogeneous databases. U-Datalog has been
introduced with the aim of providing a set-oriented logical update language,
guaranteeing update parallelism in the context of a Datalog-like language. In
U-Datalog, update atoms appear in rule bodies, thus integrating updates and
queries and exploiting the power of Datalog queries to select the data to be
modified. The execution of a goal (also called a transaction) in U-Datalog is
based on a deferred semantics, by which several updates are generated from
predicate evaluation, but not immediately executed; rather, they are collected
and are executed only at the end of the query-answering process. In U-Datalog,
updates are expressed by using constraints. For example, +p(a) states that in
the new state p(a) must be true whereas —p(a) states that in the new state
p(a) must be false. Each atom solution generates a set of updates.

The language obtained by extending U-Datalog with active rules and support
for heterogeneous databases is called Heterogeneous U-Datalog (HU-Datalog
for short). We define a HU-Datalog system as a collection of heterogeneous
databases and a set of active rules operating on such databases. In particular,
a HU-Datalog system provides the following features:

(1) Multiple sources of data and cooperative query execution. The basic model
for each deductive database is a U-Datalog database. As such, it consists
of an extensional database (i.e., a set of facts) and an intensional database
represented by a set of U-Datalog rules.

The use of U-Datalog provides the ability to model, not only queries,
but also updates inside each database. However, U-Datalog alone does
not support cooperation among several databases. Each database has
no knowledge about the others. In order to enable cooperative query
execution, we model each U-Datalog database as an Obj-U-Datalog ob-
ject [5]. Obj-U-Datalog has been defined as an object-based extension of
U-Datalog. Each Obj-U-Datalog object has a state (a set of facts, i.e.
an extensional database) and a set of methods (an intensional database).

Objects cooperate through message passing. To this purpose, U-Datalog
rules have been extended to request the evaluation of an atom in a dif-
ferent object, i.e. in our case, in a different database. This means that
during the evaluation process a database may require the evaluation of
a subquery to another database. Message passing is expressed through
labeled atoms in rule bodies.

By modeling each database as an Obj-U-Datalog object, information
deriving from different sources can be retrieved and updated in a homo-
geneous way, thus providing cooperative query and update execution. In
particular, the use of Obj-U-Datalog makes each source of data aware of
the other sources of data belonging to the considered environment.

It is important to note that, if we ignore update atoms, Obj-U-Datalog
can be interpreted as an amalgamated knowledge base, as described in
[44], based on the classical truth values. The main novelty of our ap-
proach is the extension of such amalgamated knowledge bases to deal
with updates and, as we will see in the following, actions.

Active rules. In order to exhibit a reactive behavior, active rules in the
style of Active-U-Datalog [4,22] are included in the language, according
to the PARK semantics [23].

The PARK semantics has been designed with the intent of overcoming
the limitations of most previously defined semantics for active rules. In
particular, given a set of ECA (Event-Condition-Action) rules, i.e. rules
of the form “ON event IF condition THEN action”, the PARK semantics
satisfies several properties. First of all, it is non-ambiguous, i.e., it always
guarantees execution confluence. Moreover, it is flexible with respect to
conflict resolution. A conflict is a situation where two or more active
rules can be fired and one of these rules requires the insertion of an
atom a in the database, whereas at least one of the others requires the
deletion of a from the database. A conflict resolution policy is a method
to determine which actions should be executed in presence of a conflict
and which others should be suppressed. Under the PARK semantics, the
conflict resolution policy can be chosen according to specific application
requirements. A fixpoint semantics is used to determine the result of
the application of a set of active rules. The fixpoint semantics has been
chosen because it has a clear mathematical foundation and can be directly
implemented. The proposed semantics guarantees the termination of the
evaluation process. As it has been pointed out in [23], all other proposed
semantics fail to satisfy at least one of these important requirements.

Active-U-Datalog rules are local in that each rule refers to a single
data source. A rule is triggered when specific events (updates on the
considered database) occur. The action is the execution of a set of updates
on the considered data source; thus, local active rules can modify only
the database into which they are defined.

Update propagation. To support update propagation among heteroge-
neous databases, global active rules are used. They support consistency

maintenance among different data sources. These rules can fire upon the
occurrence of complex events related to all the databases in a HU-Datalog
system, can verify conditions spanning all the databases, and can perform
actions consisting of updates against all the databases.

The use of active rules for update propagation in the context of heteroge-
neous databases has been addressed by a few other proposals [11,18,26]. The
main difference of our proposal is that the use of the PARK semantics to
integrate active and deductive rules makes the approach much more flexible
with respect to the problem of conflict resolution. Often, in active database
systems, conflicts are solved by assigning priority to rules [27,42,47]. On the
contrary, the PARK semantics allows the application programmer to choose
the best conflict resolution policy to apply in a particular case. In solving a
conflict, information about the structure and the current state of the system
can be considered. This is particularly important in a cooperative framework,
where update propagation often depends on information distributed among
various databases. For example, the resolution policy could include queries
on the state of a different database before deciding how to solve a conflict, a
behavior that cannot be simulated by using priorities.

Our approach also integrates active and deductive rules. With respect to active
rules, the field has produced various results, both commercial [3,17,29,39,41]
and academic [15,16,21,25,27,36,42,43,46,47] (the latter usually being more
flexible than the former). The semantics we propose for active rules differs
from the semantics of most other proposals in that it guarantees termination,
polynomial complexity, and confluence; almost all the other proposals fail in
satisfying at least one of these requirements. In particular, in order to assign
a clear semantics to active rules, several works proposed to integrate active
rules in a deductive framework. In giving a semantics to these active-deductive
languages, two main approaches emerged. The first one is based on unifying
the different paradigms under a common semantics (often by using compila-
tion techniques) [10,33,37,49]. The second one is based on integrating specific,
different semantics [4,20,22]. In this work, we follow the latter approach. The
use of the PARK semantics allows one even in this case to handle updates
generated by deductive rules and updates generated by active rules in a uni-
form way. For example, with respect to U-Datalog and Obj-U-Datalog [5,6],
there is no need to define a priori the behavior to be taken when conflicts arise.
Thus, our approach can also be seen as an extension of U-Datalog to deal with
multiple policies for conflict resolution. As far as we know, no other approach
of this kind has been proposed yet in the context of deductive databases.

The paper is organized as follows. In Section 2, we briefly recall the main
features of U-Datalog and Object-U-Datalog, on which our proposal is based.
Sections 3 and 4 describe respectively the syntax and semantics of HU-Datalog,
illustrating them with several examples. In particular, Section 4 introduces an

extension of the PARK semantics to deal with multi-theories and communi-
cating objects. Finally, Section 5 outlines some conclusions, discusses relations
between our work and recent work on intelligent agents, and presents future
research directions.

2 Overview of U-Datalog and Object-U-Datalog

In this section, we informally present the basic notions of U-Datalog and Obj-
U-Datalog. We refer the reader to [5,6] for an extensive description of these
languages. Moreover, we assume that the reader is familiar with the basic logic
programming concepts [31].

A U-Datalog program (or database) consists of an extensional database EDB,
that is, a set of ground atoms, and an intensional database IDB, that is, a set
of rules of the following form:

H(—Ul,...,UZ',BZ'+1,...,Bn. n>1

where Uj, j = 1, ..., 4, are update atoms and H, By, k =1+ 1,...,n, are atoms,
in the usual logic programming sense. An update atom is an atom prefixed
by the symbol +, to denote an insertion, or by the symbol —, to denote a
deletion. The intuitive meaning of such a rule is “if B;q,..., B, are true,
then H is true and the updates Uy, ..., U; are requested”. Predicates defined
in the extensional database and predicates defined in the intensional database
are disjoint.

A query is a rule with no head. Since, as we will see, U-Datalog queries may
generate updates, a U-Datalog query is also called simple transaction. A com-
plex transaction is a sequence of simple transactions, denoted by 1%;...;T,.

For simplicity, it is assumed that U-Datalog databases are safe. A rule is safe
if each variable in the head occurs in a non-update atom in the body. Often
this condition is relaxed, assuming that the rule is safe with respect to a query;
in this case, it should be safe when the head is unified with constants in the

query.

Example 1 Consider the following U-Datalog program, related to a student
database:

EDB: student(john). student (mary) . student (frank) .
exam(engl) . exam(math) . exam(phys) .

IDB: pass(S,E) « student(S), exam(E), +passed(S,E).
leave(S) < —student(S).

This database contains information about exams (exam predicate), students
(student predicate) and the exams they passed (passed predicate). The data-
base can be modified by the predicates pass and leave that, respectively, add
the fact that a student passed an exam and delete the student when he/she
leaves the school. The first rule is safe, but the second rule is not. However, the
second rule is safe with respect to the transaction leave (john). Of course, the
second rule can be replaced with leave(S) < student(S), —student(S)
which 1s always safe. O

The semantics of U-Datalog is essentially given in three steps. The first one,
called marking phase, generates a set of solutions for a given transaction. Each
solution contains a set of bindings and a set of updates. These updates are
executed only in the update phase, if they are consistent. A set of updates
is consistent if it does not require the insertion and the deletion of the same
fact. If the set of updates is not consistent the transaction is aborted and all
the updates are discarded. The third step is related to the execution of com-
plex transactions. In this case, the extensional database is updated after each
transaction execution. If a transaction aborts, the entire complex transaction
aborts as well.

Example 2

Consider again the U-Datalog program introduced in Example 1. The transac-
tion pass(john,math) causes the insertion of the fact passed(john,math)
in the database. In this case, bindings for variables contained in the head
of the rule are established by the transaction. Now consider the transaction
pass(X,Y). In this case, a set of facts is inserted, in particular all the facts
of the form passed(s,e), where student (s) and exam(e) belong to EDB. A
set of bindings of the form X = s, Y = e is also returned to the user. Note
that updates are executed since they are consistent.

Now suppose that students are associated with at least one tutor. Moreover,
suppose that two tutors, for some particular reason, need to be assigned each
the students of the other. The rules to do that are the following:

change (T1,T3) <+ -tutor(S,T1), +tutor(S,T>), tutor(S,T}).
change (77,13) < -tutor(S,T3), +tutor(S,77), tutor(S,T3).

Now consider the transaction change (mark,victor). If in the database there
exists at least one student -say john- having both mark and victor as tutors,
two pairs of inconsistent updates are generated from the previous rules (respec-
tively +tutor (john,mark) ,—tutor (john,mark) and +tutor(john,victor),
-tutor(john,victor)). Thus, an abort is returned and the extensional data-
base is left unchanged. O

Obj-U-Datalog [5] has been defined starting from the consideration that a
U-Datalog database EDB U IDB can be seen as an object where EDB is the

object state and IDB represents the set of methods to manipulate (i.e., query
and update) such state. Thus an Obj-U-Datalog program consists of a set of
object databases, each of which is a U-Datalog database, extended so that
distinct databases can refer to each other. Such references are supported by a
labeling mechanism. Thus, a method becomes a rule of the form:

H + Ul,...,Ui,BH_l,...,Bw,dbliBw_H,...,dbpiBz,Xlle+1,...,XqZBT.

where Uy, k =1, ...,4, are update atoms, B;, j = ¢+ 1, ..., w, are atoms whose
predicates are defined in the object database in which the rule is defined, B,
h = w+1,...,r, are atoms defined in other object databases. Such object
databases are referred to through the use of labels. In particular, db,,, m =
1, ..., p, are ground labels whereas X, s = 1, ..., g, are variables to which ground
labels should be assigned during the evaluation.

Example 3 Suppose that in the school considered in Example 1 there is a li-
brary. Library information is maintained in a database which is different from
the one containing information about the student. Moreover, a third data-
base stores information about the teachers. The library would like to use some
information about students and teachers in order to automatize loans. To ac-
complish that, the following Obj-U-Datalog program can be defined:

school:: student(john). student (mary) . student (frank) .
exam(engl) . exam(math) . exam(phys) .
passed(john,engl). passed(john,math) .
passed(mary,phys) . passed(frank,engl).

pass(S,E) < student(S),exam(E),+passed(S,E).
leave(S) < student(S),—student(S).

teach:: prof(william). prof (isaac). prof (eliza) .
teaches(engl,william). teaches(math,isaac).
teaches(phys,isaac). teaches(cs,eliza).

lib:: book (hamlet) . book(principia).
sect (engl ,hamlet) . sect (phys,principia).
other_user(helen). other_user (andrea) .
loan(hamlet,john) . loan(principia,frank).

user (X) <+ school:student(X).

user(X) < teach:prof(X),teach:teaches(E,X),school:exam(E).
user (X) < other_user(X).

deny loan(B,U) < user(U),loan(B,Y).

deny_loan(B,U) < book(B),request(X,U).

return(B,U) < loan(B,U),—loan(B,U).

Three object databases have been defined, labeled school, teach, and lib.
Predicates defined in the database school have the same meaning of predi-

cates introduced in Example 1. The database teach contains information about
teachers and courses they teach; it does not include any deductive rules. The
library database 1ib contains information about users that are neither students
nor teachers (other_user predicate), books (book predicate), the section of the
library to which the book is assigned (sect predicate), and about who borrowed
a book (loan predicate). It also contains rules to specify library users, and the
policy to deny a loan and to return a book. In particular, a loan is denied if it
concerns a book already on loan, or if it is from a user who was requested to
return back a book he borrowed (and has not yet complied).

Notice how rules in the library database use information about students and
exams, stored in the school database, and about teachers and their courses,
stored in the teacher database, in order to manage loans. In particular, a user
can be either a student of the school (first rule defining predicate user) or
a professor (teach:prof (X)) teaching a course of the school (second rule
defining predicate user) or a person recorded as user inside the database of
the library itself (third rule defining predicate user). O

As for U-Datalog programs, the semantics of Obj-U-Datalog programs is given
in three steps. During the marking phase, however, objects may request the
evaluation of some atoms in other objects (specified by labels), thus requiring
some form of context switching, to solve the query in another object.

3 Syntax of HU-Datalog

In Example 3, we have informally shown how Object-U-Datalog supports in-
teraction among several databases, as long as each of them knows (at least
partially) the structure of the others. This condition is too restrictive when
applied to the case of completely heterogeneous databases; hence in this case,
a different mechanism for integration should be used. This mechanism can
be provided by local and global active rules. However, explicit interaction via
message passing must also be guaranteed, in order to preserve the expressive
power of Object-U-Datalog for those cases in which some databases are indeed
tightly coupled. In the following, we present a language called Heterogeneous
U-Datalog (HU-Datalog for short) having all the previous characteristics. HU-
Datalog is thus an extension of Object-U-Datalog.

We consider a many-sorted signature ¥ = {¥4, 2, }, containing only constant
symbols. ¥4, is the set of database identifiers, whereas ¥, is the set of con-
stant value symbols. Sets ¥4 and X, are disjoint. We consider moreover a
set of predicate symbols II, partitioned into extensional predicate symbols I1¢,
intensional predicate symbols II* and update predicate symbols I1*, defined as
" = {+p,—p | p € II}.

A family of sets of variable symbols for each sort V' = {Vg, V,,} is considered.
Terms are defined as usual for each sort of our language, being a term either
a constant or a variable. We denote with Termg, the set X4 U Vg, and with
Term,, the set X,UV,,. We denote with (I, X, V)-atom an atom whose predicate
belongs to II and whose terms are in X U V. The notion of substitution is
refined to take into account the many-sorted language. A substitution is a
pair of functions 0 = {04,0,}, Oa : Vay — Termg, 0, :V, — Term,, which
maps each variable to a term of the appropriate sort.

Update atoms are extensional atoms prefixed by 4+, to denote insertion, and
by —, to denote deletion. Cooperation among databases in the system is rep-
resented by labeled atoms of the form db: p(t), where db € Termg,, meaning

that p(¢) must be solved in db.

In the following, using the concepts defined above, we formally introduce the
notion of HU-Datalog database, HU-Datalog system, and transaction.

Definition 4 (HU-Datalog database)

A HU-Datalog database DB = EDB U IDB U AR consists of an extensional
database EDB, an intensional database IDB and a set of active rules AR. The
EDB 1is a set of ground extensional atoms, called the state of DB.

The IDB 1s a set of deductive rules of the form
H «+ Ul,...,Ui,BH_l,...,Bw,dbliBw_H,...,dbpiBz,Xlle+1,...,XqIBT.
where

(1) H is a (I, %, V)-atom;

(2) Uy,...,U; are (IT*, 3, V)-atoms, constituting the update part of the rule;

(8) Bii1,...,By are (ITUIIE, X, V)-atoms, constituting the unlabeled part of
the condition (that is, they refer to the database where the rule is defined);

(4) dbi: By, ..,db,: B, are labeled (II* U114, 3, V')-atoms referring to spe-
cific databases;

(5) X1 : Byy1,...,X, : B, are labeled (II' U 11¢, 3, V)-atoms referring to
databases that are not yet specified;

(6) X1,...,X, are variables in Vg, and must appear as arguments of an ex-
tenstonal atom in Biiq,...,B,.

The update part (Uy,...,U;) and the set of conditions (Biy1, ..., By, db; :
Bytiy--.,dby: By, X1:Byi1, ..., Xy By) cannot be both empty.

The AR is a set of rules of the form
El,...,EZ’,BH_l,...,Bw,dblle+1,...,dprBz,Xlle+1,...,XqIBT —
Ui,...,U.

10

where E,...,E; is the event part (E; is a (II*,X,V)-atom, j = 1,...,1),
(Bit1; -+, By, dby : Byi1,...,dby 2 By, Xy : Byyq, ..., Xy 1 By) is the condi-
tion part (Bj is a (II'UII®, X, V)-literal, j =i+1,...,r), and B; can also be a
negative atom (denoted with —p(t)) where negation is understood as negation
as failure. Uy, ..., Uy is the action part (U; is a (II*, 2, V)-atom, j =1, ..., k),
which cannot be empty. We require two safety conditions for active rules: each
variable occurring in a rule head should also occur in the body of the same
rule and each variable occurring in a negated literal in the rule body must also

occur in some positive literal in the rule body. O
The intuitive meaning of a deductive rule is: “if B;,4,..., B, are true in the
database where the rule is defined, B,,; is true in dbs, ..., B, is true in db,,
B, is true in the database to which X; is instantiated, ..., B, is true in

the database to which X, is instantiated, then H is true and, as a side effect,
the updates Uy, ..., U; are requested”. These updates are local, that is, they
change the state of the database in which the rule itself is defined. To ensure
encapsulation, labeled updates, i.e. updates to be executed on another data-
base, are not allowed in deductive rules. In this way, the state of a database
can only be modified through its public interface, which is the set of its inten-
sional predicates. On the contrary, the knowledge contained in the state can
be freely queried by any other database.

Databases cooperate by using labeled atoms to request the evaluation of the
atom in the context of the database identified by the label. Such label can
be either a constant (providing a static communication channel) or a variable
(providing a dynamic communication channel). In the latter case, the label
identifying the cooperating database is computed by using data contained in
some database. Such an approach gives high flexibility for setting up complex,
dynamic communication structures.

While deductive rules give deductive power to our framework, active rules
allow the system to autonomously react to the current (possibly inconsistent)
state and to take appropriate actions to ensure desired properties with respect
to the final state. The intuitive meaning of an active rule is: “If the events

E.,...,E; occur and B;,q,..., B, are true in the database where the rule is
defined, B, is true in dby, ..., B, is true in db,, B, is true in the database
to which X, is instantiated, ..., B, is true in the database to which X, is
instantiated, then execute actions Ui,...,U,”. These active rules are only

triggered by local updates and only modify the state of the database which
they belong to, since both events and actions are update atoms referring to
the database itself. We call them local active rules to distinguish them from
the global ones associated with the entire system (see Definition 5). Databases
can use local active rules to enforce certain properties of the data, reacting to
consistency-breaking changes by updating other data, regardless of the source
of changes. Local active rules also simplify the deductive part, allowing one to

11

centralize certain policies in a single place instead of scattering them between
several rules.

Based on the definition of HU-Datalog database, a HU-Datalog system can
be defined as follows.

Definition 5 (HU-Datalog system)

A HU-Datalog system = = ({dby :: DBy, ...,dbs :: DB}, AR) consists of a set
of HU-Datalog databases DB1, ..., DB, respectively identified by dbq, ..., db,
(db; €), and of a set of active rules AR of the form:

dbklIEl,...,dbkiiEi,dbhliBZ’+1,. . .,dth:Bz,X13B2+1,...,XqIB,,- —
db’liUl,...,db;ciUk,XiZU]H_l,...,Xé:Um.

where dby, : Ey, ..., dby, : E; is the event part (E; is o (II*,X,V)-atom, j =
1,...,4), dbp, : Biy1,...,dby, : B, X1 : Byiq,...,Xq: By is the condition part
(B is a positive or negative (II' U116, 3, V)-atom, j =i+ 1,...,7), and db:
Up,...,dby, : Ug, X1 : Ugsr, - . ., X} : Uy, is the action part (U; is o (II*,X,V)-
atom, j = 1,...,m) which cannot be empty. These rules must satisfy the safety
conditions for active rules presented in Definition 4.

We call state of a HU-Datalog system Z the tuple (EDBy, ..., EDB;), where
EDB; is the extensional database of db. O

In a HU-Datalog system = = ({dby :: DBy, ...,dbs :: DB}, AR) we distin-
guish a deductive part, consisting of the tuple of deductive databases, i.e.
(EDB1 U IDBy,...,EDB; U IDBy), and an active part, including the local
active rules (AR1, ..., AR;) and the global ones AR.

The rules in AR differ from the local active rules in that all atoms, included
events and actions, are labeled. The reason is that those rules refer to the
entire system, as they enable update propagation among different sources of
data, and they ensure consistency across databases. Since those rules are aware
of the structure of each database, they maintain all semantics relationships
among relations stored in different databases. If an update is executed with
respect to one of such relation, the global rules ensure that the other databases
are updated appropriately. Because of their nature, global active rules play the
role of mediators [48] in integrating heterogeneous databases.

In order to ensure encapsulation, transactions to be executed in a HU-Datalog
system cannot contain update atoms. However their execution may generate
updates indirectly, because of the invocation of rules with update atoms in
their bodies. Thus a transaction may contain two different kinds of atoms:
labeled ones and unlabeled ones. Unlabeled atoms stand for the request of an
atom refutation in all the databases composing the system, while labeled atoms
are directed to a particular database. We do not restrict labels in transaction to

12

be constant as required in Obj-U-Datalog, thus allowing dynamic cooperation
to be established also at transaction level.

Definition 6 (Transaction) A simple transaction has the form
Bla .. .,Bw,dblle+1, .. .,dprBz,Xlle+1, e ,Xq:Br.

where By, ..., B, are (II' UII®, ¥, V)-atoms, db,...,db, are database identi-

fiers and X4, ..., X, are variables in Vg, that must appear as arguments of an
extensional atom in By, ..., B,.
A complex transaction T is a sequence of simple transactions Ty;...;T. O

It should be clear that a transaction provides different functions: the query
function, in that it returns a set of bindings, and the update function with
a transactional behavior [24]. As we will see in Section 4.3, the transactional
behavior ensures that all the updates are executed or, in case of ungroundness,
none of them is executed. We always assume that our rules are safe with respect
to a transaction.

Example 7 Consider again to the problem of integrating the student database
of a school and the loan database of a library. This time, we consider active
and fully heterogeneous databases. In particular, each database knows nothing
about the structure of the other, as there is no message passing between them
(compare this assumption with the ones that the database 1ib made about the
structure of databases school and teach in Example 3).

school:: student(john). student (mary) . student (frank) .
exam(engl) . exam(math) . exam(phys) .
passed(john,engl). passed(john,math).
passed(mary,phys). passed(frank,engl).

pass(S,E) < student(S), exam(E), +passed(S,E).
leave(S) < student(S), —student(S).

—student (S), passed(S,E) — —passed(S,E)

lib:: user (john) . user (mary) .
user (frank) . user(pat).
book (hamlet) . book(principia).

sect (engl ,hamlet). sect(phys,principia).
loan(hamlet,john). loan(principia,frank).

deny_loan(B,U) < request(X,U), book(B).
deny_loan(B,U) < loan(B,Y), user(U).
return(B,U) < loan(B,U), —loan(B,U).

—user (U), loan(B,U) — +request(B,U).
—loan(B,U), request(B,U) — —request(B,U).

13

Predicates defined in the databases school and 1ib have the same meaning
of predicates defined in Example 3. However, now active rules are included
in each database. In particular, the only active rule in school takes care of
removing from the database any information related to the exams passed by a
student when the student is removed from the database (whatever is the cause
of such removal).

In 1ib, two active rules take care of requesting all the books someone has on
loan when he/she is revoked his/her user status, and of removing any pending
request for a book when it is returned to the library.

We want to integrate these two databases so that when a student joins the
school, he/she is automatically considered a user of the library, and when
he/she leaves the school, he/she is removed from the users of the library. More-
over, we want that when a student passes an exam, the library is able to require
back all the books the student has on loan from the section corresponding to
the passed exam. This behavior can be obtained by adding the following active
rules to the global AR set:

school:+student(S) — 1lib:+user(S).
school:—student (S) — 1lib:—user(S).
school:+passed(S,E),lib:1oan(B,S) ,1lib:sect (E,B) — 1lib:+request(B,S).

When Frank passes physics, this information is recorded in the school database
by executing the transaction school:pass(frank,phys). The first deductive
rule of school causes the insertion of passed (frank,phys) in the school data-
base. Such insertion in turn fires the last global active rule, whose conditions
are met by lib:loan(principia,frank) and lib:sect(phys,principia).
Therefore request (principia,frank) is added to the library database, dis-
allowing any further loan to Frank until the book is returned. Should John
leave the school, the second global active rule would fire, causing the library
to remove him from the user list. As part of the local processing activity, the
first active rule in the library database would fire, causing the insertion of
request (hamlet, john) in that database.

When a book is returned by a transaction lib:return(book,user), the last
deductive rule in 1ib requires the deletion of the loan record. Such deletion
fires the last local active rule in 1ib that removes any pending request for the
book.

As another example, consider the problem of a student who wants to mowve to
a different school. We want that exams, passed in the school the student is
leaving and common to both schools, are confirmed in the school where he/she
1s moving. Such information flow can be easily achieved by the following global
ARs:

14

school:+move(S,T) — school:—student(S),T:+student(S).
school :4+move (S,T),school:passed(S,E),T:exam(E) — T:+passed(S,E).

This solution works if the two schools have the same database schema. In
Ezxample 32 we will consider the case of two schools with different but related
information. Notice also that the identifier of the database of the new school
is obtained from the move predicate and is dynamically used by means of the
variable T. S

4 Semantics

The semantics of a HU-Datalog system is given in three steps. In the first step,
we compute the model of the deductive part and collect the set of bindings that
satisfies the transaction, and the requested updates. This step corresponds to
the marking phase in Obj-U-Datalog [5]. However, if the result of this step is a
set, of inconsistent updates, we do not abort the transaction as Obj-U-Datalog
does. Instead, we solve the conflicting updates in the second step. The notion
of inconsistency is here extended to sets of labeled updates. A set of labeled
updates is consistent if it contains no opposite updates labeled by the same

database identifier, i.e. db:+7(f) and db: —r (%)

In the second step, we compute the semantics of the active part of the system,
according to the model and the updates collected in the first step. The result
of this step is the set of consistent updates requested either from the deductive
and/or the active part, in which any conflict has been solved by a parametric
policy. Finally, we describe how the two semantics fit together and how we
apply the computed updates to the extensional databases of the HU-Datalog
databases, thus obtaining the new state of the system.

The observable property of the transaction consists of a set of bindings (the
answer), the new system state, and the termination status (commit/abort)
of the transaction itself. Actually, our transactions always commit because of
the conflict resolution policy of the active part, that solves any inconsistency.
Although our semantics never produces aborts by itself, we prefer to keep the
flag which indicates the success/failure of a transaction to be consistent with
the semantics of U-Datalog and Obj-U-Datalog, and to allow for a smooth
extension of our semantics to situations where transactions can go wrong (e.g.,
implementation-related failures).

15

4.1 Deductive part semantics

The semantics of the deductive part is defined as the collection of the seman-
tics of independent databases, as proposed in [5]. Each database interacts with
another database only through explicit context switches, that is, through re-
quests for the evaluation of a subquery sent to the other database. We define
a bottom-up semantics for the marking phase, based on a parallel immediate
consequence operator. This semantics is based on a composite structure for
interpretation in which all the databases in the HU-Datalog system are inter-
preted simultaneously. For each database, its interpretation is a subset of the
set of constrained atoms, B, defined as follows:

BS={H <« U | Hisa (II'UII¢, %, V)-atom, U is a set of labeled
(I1%, 3, V')-atoms }*

The presence of the constrained atom H < U in the interpretation means
that H is true and that its evaluation requires the execution of U. All updates
in U are labeled and their labels refer to the database on which they have to
be executed. The labels are constants, whereas the atoms are not necessarily
ground.

At this point, an interpretation for a set of HU-Datalog databases DB, ...,
DBy, identified respectively by dbs,...,dbs, is a tuple of sets (I(dby),...,
I(dbs)) where each I(db;) is a subset of B that interprets the associated data-
base db;. The domain Z = p(B)* of all interpretations? endowed with the
usual order on tuples, induced by the subset order, i.e.

(Ii,...., I,y T {I],..., I}y if and only if L;CI, foralli=1,...,s
is a lattice. Notice that since B* is finite, Z is finite.

The next definition formalizes the intuitive meaning of a rule from the deduc-
tive part of the system presented in Section 3. It differs from the consequence
operator of Obj-U-Datalog because our resulting interpretation can include
constrained atoms with inconsistent updates.

Definition 8 (Immediate consequence operator)
Given a HU-Datalog system Z = ({dby :: DBy,...,dbs :: DB}, AR), the
immediate consequence operator T= : Z — Z is defined as follows:

T=(I) = (Ta, (1), - - -, Tan, (1))

1" As shorthand, a constrained atom H ¢« is simply denoted by H itself.
2 With D?* we denote the product D x --- x D.
—_——

s times

16

where I € T and for each 1, 1 =1, ..., s, we have

Tdbl(I):{A «U | H «+ Ul,---,Um,Bl,---;Bn,dbkl:Bn—|—1,---,dbkw:Bn+w,
X1:Bniwt1s - - Xp: Brjwip
1s a renamed apart rule of db;,
Vr=1,...,n B. < U, € I(db;),
Vo=1,...,w B}, + Uniq € I(dby,),

0 = mgu((B, ..., Buyw), (Bl Byyy)),

Vit = 1,...,p B':L—I—w—kt — Un+w+t € I(Xtﬁ),

f' = mgu((Bn+w+19, ce Bn+w+p0)a (B';L—I—w—l—la) B;H—w-l—p))a
A= HO0',

U = U1 {dbi: U008y UT100' U ... UT 000’}
O

To build the set of updates, we collect the labeled updates deriving from the
resolution of the atoms By, ..., By,4,+p in the appropriate databases, and the
local updates which are labeled by the identifier db; of the database itself.

The condition requiring that each variable appearing as a label in the body
of a rule must appear as argument of an extensional atom of the unlabeled
or constant labeled part of the rule, guarantees that the substitution € is
grounding for all such variable labels. Therefore the defined semantics correctly
models dynamic channels. Since dynamic labels are no longer visible in the
resulting interpretation 7= (I), in that they are instantiated on the extensional
database, we do not consider them any more in the semantics of the deductive
part of HU-Datalog.

It is easy to prove that the operator defined above is monotonic on the lattice
(Z,C) because Ty, is monotonic, i = 1,...,s. Since the domain is finite, the
monotonicity of a function is a sufficient condition for its continuity. Therefore
T= is continuous and this allows us to define the fixpoint semantics for a
HU-Datalog system as the least upper bound of the chain of the iterated
applications of Tz starting from the tuple of the extensional databases.

Definition 9 (Deductive Model)

Let = = ({db, :: EDBy UIDB{U ARy, ...,dbs :: EDB;UIDB;U AR}, AR)
be a HU-Datalog system. The fizpoint semantics F(Z) of Z is defined as
F(E) =TE((EDBy,...,EDBy)), where as usual, T¢ ((EDB, ..., EDBy)) rep-
resents ||, T2 ((EDBy, ..., EDBy)). O

Notice that the above fixpoint is reached in a finite number of steps due to
the finiteness of the domain [9].

3 U6 denotes the set of updates obtained by applying the substitution # to each
update in U.

17

Example 10 Consider the following HU-Datalog system with empty sets of
local and global active rules.

m:: p(a). p(b). q(a). n:: z(a). z(b).
r(X) < pX), n:s(X,Y), +q(X). s(X,Y) « z(X), m:t(Y), +k(X).
t(X) < q(X), p(X),-q(X).

The least fizpoint computation proceeds as follows:

T2({EDBy, EDB,)) = ({p(a), p(b), q(a)}, {2(a), 2(b)})

Tz((EDBq, EDB,)) = ({p(a), p(b), ¢(a), t(a) < m:—q(a)},{2(a), 2(b)})

TE((EDBy, EDB,)) = ({p(a), p(b), q(a), t(a) + m:—q(a)}, {z(a), 2(b),
s(a,a) < m:—q(a),n:+k(a),

TZ((EDBu, EDB,)) = ({p(a), p(b), a(a), t(a) < m:—q(a),

a) < m:—q(a),n:+k(a), m:+q(a),
r(b) + m:—q(a),n:+k(b), m:+q(b)},
{z(a), 2(b), s(a,a) < m:—q(a),n:+k(a),
s(b,a) < m:—q(a),n:+k(b)})

T2((EDB,, EDB,)) = T2({(EDB,, EDB,))

r

Hence the least fizpoint is F(Z) = T2((EDBy, EDB,)). It is worth remarking
that the set of updates in the constrained atom r(a) <~ m:—q(a),n:+k(a), m:
+q(a) is inconsistent. O

Before introducing the set-oriented semantics we give two auxiliary definitions:
Definition 11 Given a set of bindings b and a transaction T, we define

br={(X =t)eb|X occurs in T}

Definition 12 Given a substitution 0 = {V1 < t1,...,V, « t,} we define
eqn(@) = {Vi=ty,..., Vo =1t,}.
O

Now we define the semantics of a simple transaction 7" with respect to a HU-
Datalog system =. As usual in database systems, we give a default set-oriented
semantics, that is, the query-answering process computes a set of answers. We
denote with Set(7’, =) the set of pairs {(bindings, labeled updates) computed as
answers to the transaction 7.

18

Definition 13 (Simple transaction answer)

Given a HU-Datalog system = = ({db, :: DB1,...,dbs:: DBs}, AR) and a
simple transaction T=DB,, ..., By, dbg, : Byt1,...,dbg, : Byip, X1:Byypit, -,
Xg:Byipiq, then

Set(T,=) ={(b,U)|Vi=1,...,w I 1< j<s. A« U; € F(E)(db)),
Vi=1,...,p Ausi & Uwpyi € F(ZE)(dby,),
0 = mgu((Bu, - - -, Butp), (A1, ., Auip)),
Vi=1,...,q9 Apipri < Unpipri € F(E)(X0),
0 = mgu((By4p+10, - - - s Buiptg?); (Awtptis-- s Awiptq)),
b= eqn(00')r,
U = Uiz1wiptq U00" }.

|

Note that, if an atom is not labeled, we look for a database in which this atom
can be solved, that is, for a database which includes an instance of the atom
in its model. We collect all possible solutions in Set. On the other hand, if the
atom is labeled, we restrict our search to the database specified by the label.
Such a database is always known since the substitution € is grounding for
variable labels, due to the condition that these variables occur at least in one
extensional atom of the unlabeled or constant labeled part of the transaction.

Notice that in Obj-U-Datalog, only pairs with consistent updates are inserted
in Set. Instead, we release such restriction, deferring the conflict resolution at
the next step (Section 4.2). Moreover, atoms labeled by variables are permitted
in transactions, whereas Obj-U-Datalog forbids them.

Example 14 Let r(X) ,n:z(X) be a simple transaction on the system = de-
scribed in Example 10. To compute Set, the deductive model of = is exploited,
obtaining:

Set((r(X),n:2(X)),E) = { ({X =a},{m:—q(a), n:+k(a), m:+q(a)}),
({X = b}, {m:—q(a), n:+k(b), m:+q(b)}) 1}

Notice that in the first tuple the set of updates is inconsistent. O

4.2 Active part semantics

The active part semantics is given following the line of the PARK semantics
proposed in [23]. We extend it to deal with labeled atoms and multi-theories.
This semantics is well suited to a deferred-update approach, like the one we
used in the previous step, and adds much flexibility in that it uses a parametric
policy to solve conflicts.

19

This semantics builds an auxiliary model containing, in particular, the update
atoms needed to trigger active rules and to obtain the new system state. To
this end, we define a bottom-up operator whose domain is

Bi = {dbp(g) | db € Edbap(tN) € B} U {db-i-p(f), db—p({) | db € Edba
p(t) € B,p € 11}

where B is the standard Herbrand Base* . A subset of B* is an i-interpretation
(where the “i” stands for intermediate). An i-interpretation is consistent if it
does not contain any pair of opposite updates labeled by the same database
identifier, i.e. db:4+a and db: —a. This is exactly the consistency definition for
sets of labeled updates.

In the following, we denote with d, d' a constant or variable database identifier
(d,d" € Termg,), with db a constant database identifier (db € ¥g), with B, B’ a
(II*UTIe, X3, V)-atom, with U a (1%, ¥, V)-atom, with G a (I, ¥, V')-atom, and
with L a positive or negative (I, X, V')-atom. We sometimes add subscripts to
these symbols.

To establish when an active rule can trigger, that is when its event occurs
and its condition holds, we introduce the valid function on labeled atoms and
i-interpretations.

Definition 15 (Validity) The validity of a ground labeled literal db:a in an
i-interpretation I s defined as follows:

In{db:p(#),db:+p(D)} # 0 if a = p(1);
valid(db:a,I) = ¢ 1N {db:p(t),db:+p()} =0 or db:—p(t) € I if a = —p(%);
db:acl otherwise.
O

A labeled positive (IT¢ UTT?, ¥, V)-atom is valid in I if it belongs to I or if it is
inserted by an update in I. A labeled negative (II¢ UII*, 3, V)-atom is valid in
1 if it is deleted by an update in I, or if its positive atom is not valid. A labeled
(IT*, 33, V)-atom is valid in I if it belongs to I. Notice that both db:p() and
db:—p(t) can be valid according to the above definition. The intuition behind
Definition 15 is that since a labeled positive or negative atom belongs to the
condition part of the active rule, its validity must be checked with respect to
the derived atoms and also to the inserted and deleted atoms. On the other
hand, to represent the occurrence of an event, we require that just the labeled

update modeling such an event must belong to the i-interpretation.

4 We recall that the standard Herbrand Base is the set of ground positive atoms
consisting of all predicate symbols in IT* U II® and constant symbols in X.

20

To solve the condition part of an active rule, we want to use the knowledge con-
tained in the deductive part. However, in exploiting such knowledge, we work
under different assumptions with respect to those presented in Section 4.1:

e conditions should be checked by taking into account the requested updates;
e the resolution of a condition should not affect the state of the system.

While the first condition is assured by Definition 15, to fulfill the second con-
dition we remove the update part from the rules of the intensional databases
by using the purification operation defined below.

Definition 16 (Purification) Let IDB be the intensional database of a HU-
Datalog database; we define its purified version IDB as the set of rules

Bi+1,...,Bw,dbk1ZBw_H,...,dbkpiBz,XliBz+1,...,XqIBT — H.
such that there exists in IDB a rule

H 4« Uy,...,Uy,Bis1, .-, By,dby, : Byia, - dbg, : B., X1 : By, ..., X0 B
O

Example 17 The purified form of the intensional databases presented in Ez-
ample 10 is the following:

DB, = p(X), n:s(X,Y) — r(x). IDB, =
qX), p(X) — t(x). z(X), m:t(Y) - s(X,Y). ©

It is worth noting that a query is provable in IDB U EDB if and only if it is
provable in IDB U EDB, with the same computed answers. Purification only
avoids the side effects of the query evaluation. Also notice that we reversed the
direction of the arrow in order to have a uniform notation with active rules.

Both purified and local active rules are transformed in order to have a set of
rules having only labeled atoms. This operation is called labeling and simply
adds to each unlabeled atom of a rule the label db of the database where it is
contained.

Definition 18 (Labeling) Given a set of rules R and a database identifier
db € Yg, we define the set of labeled rules lab(R, db) as the set of rules

db:Ll,...,db:Lk,dllLk+1,...,dTILk_H- — db:Gl, ...,db:Gm,
dllle+1,...,d{,.:Gm+s.

such that there exists in R a rule

Ll;---aLkadlsz—i—l;---;dr:Lk—f—r — Gl,...,Gm,dlllGnH_l,...,d;,IGm_H. O

21

We denote with £ the set of labeled rules. In the sequel, we generically use the
term “rules” to refer to both labeled active and labeled purified rules. Notice
that Definitions 19, 20, and 21, given a set of rules, only take into account
labeled active rules, while subsequent ones work on both kinds of rules.

Now, suppose that given an i-interpretation, several rules are fireable. It may
happen that the actions requested by those rules are in conflict. For exam-
ple, some rules add a certain labeled atom and others remove it from the
i-interpretation. In order to obtain a new consistent i-interpretation we pre-
vent one set of rules from firing: if we choose to insert the labeled atom, only
the rules adding it are triggered, otherwise only the rules removing it are
triggered. Formally, we first define the notion of conflict, which consists of a
labeled atom and the sets of rules inserting and removing it.

Definition 19 (Conflicts) A pair (r,0), where r is a rule and 0 is a ground
substitution for r is called a rule grounding.

Let P be a set of rules and let I be an i-interpretation for P. Then conflicts(P,I)
is a set of mazimal triples of the form (db:a,ins,del) such that a is a ground
atom, db is a database identifier and ins and del are sets of rule groundings.
For each such triple the following conditions must hold:

(1) 3r=di:Ly,...,dp: Ly = dpo1:Us, ... dyyk: Uk, and
r'=dy:Ly,...,d, L, —d, . U, ..o dy UG, et € P
and 3 0,0 ground substitutions such that
e valid((d;: L;)0,1),i=1,...,n,

o valid((d}:L)#',I),i=1,...,m,
e 14,5 1<i<k.1<j<s U; =+B, U]'-=—B’ and

(db:a) = (dyys: B) = (d'y,,: B').
(2) For all possible v, v’ and 0, 0', satisfying condition 1 above, (r,6) € ins
and (r',6") € del. O

A triple (db:a,ins,del) € conflicts(P, I) is called a conflict. To solve conflicts,
a parametric conflict resolution policy is introduced. In the following we call
labeled extensional database a set of labeled ground extensional atoms.

Definition 20 (Conflict resolution policy) Let Dom be a domain, record-
ing information about rules (i.e., the priority of the rule, the database the rule
belongs to, and anything else which is useful to implement a certain policy).
Given a labeled extensional database EDB, a set of rules P, a mapping f :
L — Dom, an i-interpretation I and a conflict ¢, we define sel(EDB, P, f, 1, c)
as a total function with codomain {insert, delete}. O

The intended meaning of sel(EDB, P, f, I, (db:a,ins, del)) is to choose whether
the labeled atom db:a, object of the conflict, should be inserted in or deleted
from I, thus effectively choosing which of the conflicting update requests

22

should prevail. The function f provides information about the rules, which
may be useful to implement a certain policy.

Gottlob et al. [23] present a number of commonly adopted policies, and discuss
their advantages and disadvantages. We briefly recall here some of them. The
principle of inertia states that both the conflicting updates should be discarded,
thus leaving EDB in the same state as before with respect to db:a (in our
framework, this can be obtained by returning insert if db:a was already in
EDB, delete otherwise). The source priority policy determines which update
should prevail according to which database the rules requesting such updates
come from (in our framework, this can be obtained by using the mapping f
which establishes the relation between rules and databases of our system).
The rule priority policy, found in systems such as Ariel [27], Postgres [42]
and Starburst [47], assumes that each rule has a (static or dynamic) priority
associated with it; sel returns insert or delete as needed to preserve the update
requested by the highest-priority rule. Other policies, like voting schemes or
user queries, are also reasonable, but the final choice is left to the particular
application.

Based on the result of the sel policy, we prevent the rule instances in one of the
two sets of a conflict from firing, by blocking them according to the following
definition.

Definition 21 (Blocked rule instances) Given a labeled extensional data-
base EDB, a set of rules P, a mapping f : L — Dom, a conflict resolution
policy sel, and an i-interpretation I, let

X = {del | (db:a,ins,del) € conflicts(P, I),
sel(EDB, P, f,1,(db:a,ins,del)) = insert}
Y = {ins |(db:a,ins, del) € conflicts(P, I),
sel(EDB, P, f,1,(db:a,ins,del)) = delete}

We define blocked(EDB, P, f, I, sel) = (Uyex z) U (Uyey y) . 0

An entire rule instance is blocked, instead of the single update responsible
for the conflict. This choice has the nice side effect that the set of updates
requested by a rule instance exhibits an atomic behavior: either all the updates
in the set are executed, or no update at all. Such atomic behavior prevents the
risk of an inconsistent database state because of partially-executed actions.

Example 22 Consider the labeled extensional database EDB and the set of
rules P given below:

23

EDB = m:t(a,a). m:t(a,b). n:r(a).

P = ry m:t(a,X) — m:p(X).
ro n:s(X), n:r(X) — m:pX).
rg n:+s(X),m:t(X,Y) — o:+qX).
ry n:+s(X),m:t(X,Y) — o:—q(¥).
rs n:+s(X) — o:+q(b).
re 0:+q(X),m:p(X) — m:—t(X,X).

Given an i-interpretation I = {m :t(a,a),m: t(a,b),n:r(a),n: +s(a)}, the
conflict set is
conflicts(P, I) = {c1, 2}

where

c1 = (0:q(a), {(rs,{X < a,Y < a}), (r3,{X < a,Y < b})},
{(rs, {X < a,Y < a})})
c2 = (0:q(b), {(rs, {X = a})},{(rs, {X < a,Y < b})}).

Now, consider a function f associating each rule with the database in which
the rule is contained. Suppose that the conflict resolution policy sel is such that

sel(EDB, P, f,1,c;) = insert sel(EDB, P, f,1,cy) = delete
Then, we have that
blocked(EDB, P, f,I,sel) = {(r4, {X + a,Y « a}), (r5,{X < a})}. O

Using the above concepts, the immediate consequence operator on i-interpre-
tations can be defined as follows:

Definition 23 (Immediate consequence operator) Given a set of rules
P, a set of blocked rule instances B, and an i-interpretation I, we define
Lpp(l) as the smallest set S satisfying the following conditions:

e /I CS;
o Ifr=di:Ly,...,dy: L, > d:Gy,...,d,:Gp, € P and 6 is a ground sub-
stitution for r such that

’ (T: 0) € B
valid((di:L)8,1),i = 1,..,n
then {(d,:G1)0, ..., (d" :G)0} C S. s

The operator T'p 5 is monotonic on the lattice (p(B%), C), hence continuous
because p(B*) is finite.

The main difference of the above operator with respect to the traditional
immediate consequence operator of logic programming is that it may happen
that some rules are not fired even if their body is valid.

24

Example 24 Let I be the i-interpretation, P the set of rules, EDB the labeled
extensional database, and B = blocked(EDB, P, f, I,sel) presented in Ezam-
ple 22, then we obtain

Lpp(I)={ m:t(a,a), m:t(a,b), n:r(a), n:+s(a), m:p(a), m:p(b),
o ra(a), 0:—q(b))

The use of blocked has prevented the insertion of any conflict in I'pp(I). <

In general, the application of the function I'p g to a consistent i-interpretation
does not return a consistent i-interpretation. We must appropriately select
rules, that is we must build a set of blocked rules B such that the least fixpoint
of I'p p is consistent. Thus, instead of dealing with i-interpretations, the notion
of bi-structures is introduced, as in [23], in order to take into account blocked
rules.

Definition 25 (Bi-structures) A bi-structure (B,I) consists of a set B of
rule groundings and of an i-interpretation I. We define an order relation on
bi-structures as follows:

BcB or

B=B andICl

(B,I) < (B, I'Y &

Moreover, given A and B bi-structures, AXB = (A=BVA<B). O

Bi-structures ordered by < form a complete partial order because there are
only finitely many pairs (B, I). On this domain, we can define an operator
having a fixpoint, that is used as a model of the active part.

Definition 26 (A operator) Given a set of rules P, a mapping f : L —
Dom, a bi-structure (B, I), and a conflict resolution policy sel, we define

(B,Tpp(I)) if Tpp(I) is consistent

AP,f,sel((Ba I>) =
(B Ublocked(I+, P, f, I,sel), I't) otherwise

where I+ = {db:p(t) € I | p € TI°}, i.e. the set of labeled extensional atoms
contained in I. a

The definition of A we give here differs from the original in [23] in two respects:

e the i-interpretation consists of labeled ground atoms, because it represents
the derived atoms and the updates concerning a set of databases, since we
are in a multi-theory context;

e the set of rules P contains not only rules with updates in the right hand
side (properly active rules) but also purified rules that derive intensional

25

knowledge rather than new updates. Notice that this extension does not
affect the consistency of i-interpretations, since the purified rules can only
add labeled (IT*, 3, V)-atoms to the i-interpretation.

The intuitive idea of the A operator is that, if no conflict arises, A does
not change the blocked rules set B, and only the i-interpretation of the bi-
structure is changed by adding the immediate consequences of the non-blocked
rules. On the other hand, as soon as a conflict arises, the conflict is solved
via the resolution policy sel and all the blocked rule instances are collected.
Then the computation of A starts again from the i-interpretation I+ and the
augmented set of blocked rules. The i-interpretation I+ represents the set of
labeled extensional atoms of the system, and we have to resort to it to be
sure that the starting point of the new computation does not contain atoms
whose validity depends on actions of rule instances that are now blocked. As
remarked in [23] for the PARK semantics, this semantics may be viewed as
a smooth cycle integrating inflationary fixpoint computation [30] and conflict
resolution policies.

The next proposition states that the A operator is growing (statement (1)),
therefore, for the finiteness of the domain, a fixpoint is reached by iterating A
a finite number of steps (statement (2)). Furthermore, the i-interpretation of
the fixpoint is consistent (statement (3)). The proof is an easy reformulation
of the ones presented in [4] and [23].

Proposition 27 Given a set of rules P, a mapping f : L — Dom, a conflict
resolution policy sel, a bi-structure A = (B, I) with I a set of ground labeled
extensional atoms, the following statements hold:

(1) A = AP,f,sel (-A);
(2) there exists k such that A} ;. (A) is a fizpoint of Ap je;
(8) if Al ¢ o(A) = (B, I'), then I' = Ifp;(Tppr) > and I' is consistent. O

4.3 Integrating deductive and active semantics

To assign a semantics to a HU-Datalog system, we must compose the results
of the deductive part and active part semantics. We first compute the set of
answers in the marking phase (Definition 13). Then we build a set of labeled
active and purified rules (Definition 28), and define a mapping f : £ — Dom
and a conflict resolution policy sel in order to apply the A operator (Def-
inition 26). From the fixpoint of A, we obtain a consistent i-interpretation
(Proposition 27), from which the new state of the system is computed (Defi-
nition 29).

5 Ifp;(f) denotes the least fixpoint of f which is greater or equal to I.

26

Before presenting the bottom-up semantics of a HU-Datalog system, we need
to define the set of rules used to compute the active part semantics, how to in-
corporate updates in the state and finally, which are the observable properties
of a transaction.

The set of rules and the labeled extensional database, used to compute the
active part semantics, are defined as follows.

Definition 28 (p-set, c-set)
Let = = ({db, :: EDB, UIDB,U AR, ...,dbs :: EDB;UIDB;U AR}, AR)
be a HU-Datalog system and U be a set of labeled updates. We define

p(E,U) = (U {r|re Iab(Ib\Bz‘ U ARiadbi)}> UARU

i=1,s

({—db:+a|db:+a €U} U{— db:—a|db:—a € U})

e(2)= J {dbi:p(?) | p(f) € EDB;}.

i=1,s

|

The set p(Z,U) contains: the purified rules of the intensional databases and
the local active rules, appropriately labeled; the global active rules; and the
updates requested from the deductive part represented as rules with neither
event nor condition. Therefore this set keeps the intensional knowledge of the
system needed to verify the condition part of the active rules, and both local
and global active rules needed to maintain local consistency and to propagate
updates. On the other hand, £(Z) contains the extensional knowledge of the
system, i.e., the set of all labeled atoms belonging to the state of the system.

The semantics of the previous steps (see Sections 4.1 and 4.2) includes neither
the execution of the collected updates nor considers the transactional behavior.
We now define a function which given an i-interpretation and the current state
of the system, returns the next state obtained by executing the updates in the
i-interpretation.

Definition 29 (Updates incorporation) Given a consistent i-interpreta-
tion I and a tuple EDB = (EDB,, ..., EDB,), where EDB; is the extensional
database of db;, we define

incorp(I, EDB) = (EDB',, ..., EDB")
where EDB; = (EDB;\ {a | db;:—a € I}) U{a | db;:+a € I}. O

Finally, the observable properties of a transaction we are interested in are the

27

set of answers, the next system state, and the result of the transaction itself
(i.e. Commit or Abort).

Definition 30 (Observables)

An observable Obs is a triple (Ans, EDB, Res) where Ans is a set of bindings,
EDB is a tuple of extensional databases and Res €{Commit, Abort}. The set
of all observables is denoted by Obs. O

Now, we give the semantics of a HU-Datalog system distinguishing two cases,
namely, the case of simple transaction and the case of complex transaction.

Definition 31 (HU-Datalog system semantics)

Let 2 = ({db, :: EDB, UIDB,U AR,...,dbs :: EDB;UIDB;U AR}, AR)
be a HU-Datalog system, T be a transaction, f be a mapping from the set
of rules L to a certain domain Dom, and sel be a conflict resolution policy.
The semantics of a transaction T is denoted by the function Sems ;<o defined
as

=)y

Semg,f,sd(T) == sel (T)((@, <EDBl, ey EDBS>, Commlt))
where the function Sz jse(T) : Obs — Obs is defined as follows:

If T 1s a simple transaction, then

(0, €, Abort) if v = Abort
Sz 7,50 (T) ({0, €,7)) = § (Ans,incorp(I, £), Commit) if U ground, v = Commit
(0, &, Commit) otherwise

where

Ans = {b] ‘ <bj,ﬂj> - Set(T, E)}
U:U{ﬁj | <bj,Uj> € Set(T, E)}

P:p(E,U)
<B’ I) = A%,f,sel((qja 6(5»)

If T is a complex transaction Ty;...; Ty, (k > 2), then

I

S: seI(Tl; e ,Tk)(ObS) = SEI,f’sd(Tg; “eny Tk)(SE, sel (Tl)(ObS))

=)y

where =' = ({db, :: EDB; UIDB U AR, ...,dbs :: EDB;UIDB. U AR}, AR)
and (EDB',...,EDB.) is the new state of the system, that is, the second
component of the observable Sz fse(11)(Obs). O

28

It is worth remarking that our semantics, unlike the semantics developed in
[5], never generates aborts because of conflicts, thus augmenting the successful
computations. This is made possible by the active component of our language,
and especially by the conflict resolution policy. However, as already discussed,
we elect to keep the indication of success (commit/abort) as observable prop-
erty. Therefore the first case of the above definition, propagating Abort, is
formally necessary, although it will be never used in computing the result of
a transaction.

Moreover, note that the “otherwise” case discards all changes to the state of
the system if a non-ground update is requested. The semantics of a complex
transaction is simply given by the sequential composition of the updates gen-
erated by its component transactions, since none of them can abort. The state
of the system is updated after each simple transaction. Besides, this seman-
tics discards the answer to all but the last transaction, to stay close to the
approach in [5].

As already noted, the answer set Set and the A fixpoint are computed in
a finite number of steps, hence Semsz fse is computed in a finite number of
steps. Actually, it is computable in polynomial time in the size of the state
of the system when the mapping f and the conflict resolution policy sel are
computable in polynomial time.

Example 32 Consider again the two databases school and 1ib introduced in
Example 7. We want to integrate the school-library system with the database
of another school, called sch2. Being in a heterogeneous environment, sch2’s
structure is quite different from that of school. In particular, the second school
admits two types of students, namely undergraduate (undergr predicate) and
PhD (phd predicate), and some of its courses are split into two units, with an
examination at the end of each unit. A two-units course is considered passed
when both the first and the second unit examinations are passed; units must
be taken in their natural order.

sch2:: undergr(pat) . phd(annie) .
exam(math,2). exam(cs,1).
units_passed(pat,math,2). units passed(annie,math,1).

units_passed(annie,cs,1).

student (S) < undergr(S).

student (S) < phd(S).

passed(S,E) < student(S),exam(E,N),units passed(S,E,N).

pass_unit(S,E,1) < student(S),exam(E,N),+units passed(S,E,1).

pass_unit(S,E,2) < student(S),exam(E,2),units passed(S,E,1),
+units_passed(S,E,2),—units passed(S,E,1).

In the database sch2, predicate exam is used to maintain the name of a course

29

and the number of its units. Predicate units_passed stores, instead, the num-
ber of units, of a given course, a student has already passed. Information about
courses passed by a student can be obtained from predicate passed, whereas
predicate pass_unit updates information about the number of units, of a given
course, a student has already passed. For the sake of the example, we do not
consider active rules in this database. Notice how sch2 is fully local (no atom
is labeled) and totally unaware of the existence of school and lib.

We recall that to integrate the school and 1ib databases, we introduced the
following rules in our global active rules set:

school:+student (S) — 1lib:+user(S).
school:—student(S) — 1lib:—user(S).
school:+passed(S,E) ,1ib:1oan(S,B) ,1lib:sect (E,B) — 1ib:+request(B,S).

These rules express our integration policy: every student of school is a user
of 1ib, and when a student passes an exam, the library requests back any book
the student has on loan for the course he/she has just passed. Our integration
policy regarding school and sch2 is easily stated: we want that students can
move from school to sch2, and in doing so any exam they have passed in the
first school is preserved (if applicable) in the new school. The following global
active rules state exactly the intended behavior:

school:+move(S,sch2) — school:—student(S), sch2:+undergr(S).
school:+move(S,sch2),school:passed(S,E),sch2:exam(E,N)—
sch2:4units_passed(S,E,N).

These rules are more specialized than the similar ones presented in Example 7
since we cannot simply assume that the other school database has the same
structure of the first one. This is a common phenomenon: it is possible to
write rules for generic databases if it is possible to assume something about
their structure, otherwise specialized rules must be used to perform integration.

We decide also that undergraduate students of sch2 should have access to the
library. Such behavior obtained by using the following global active rules:

sch2:+undergr(S) — lib:+4user(S).
sch2:—undergr(S) — 1lib:—user(S).

sch2 is more liberal than school regarding loans, so it will not claim back
books on loan when a student from sch2 passes an exam.

We still need to introduce the move predicate in school to allow the active
rules to fire. This can be obtained by adding

transfer(S,T) < student(S), +move(S,T).

to the IDB of school.

30

This addition is appropriately placed in school, because a transfer to another
school 1s an event semantically relevant for a student of school, and only
the school database can verify whether the student to transfer is actually a
student in school. Although the verification is specialized to a given database,
as it should be, the actual transfer is not: both transfer and move handle the
destination school as a totally generic database. Only in the global active rules
the name of the destination is used to perform the appropriate integration.

Now, we can show how the system = = ({school,lib, sch2}, AR) reacts to
the transaction

T =school:transfer(john,sch2)

The first step computes the fixpoint semantics of the deductive part, according
to Definition 9. The result is the following:

F(Z) =({ student(S)%, exam(€), passed(john,engl), passed(john,math),
passed(mary,phys), passed(frank,engl),
pass(S,E)« school:+passed(S,E), leave(S)« school:—student(S),
transfer(S,D)«school:+move(S,D) },

{ user(S), wuser(pat), book(K), sect(engl,hamlet),
sect(phys,principia), loan(hamlet,john), loan(principia,frank),
deny_loan(hamlet,S), deny_loan(hamlet,pat),
deny_loan(principia,S), deny_loan(principia,pat),
return(hamlet,john)<lib:—loan(hamlet,john),
return(principia, frank)<lib:—loan(principia, frank) },

{ undergr(pat), phd(annie), exam(math,2), exam(cs,1),
units_passed(pat,math,2), units_passed(annie,math,1),
units_passed(annie,cs, 1), student(T), passed(pat,math),
passed(annie,cs), pass_unit(T ,G,1)sch2:4units_passed(T,G,1),
pass_unit(annie,math,2)«sch2:+units_passed(annie,math,2),
sch2:—units_passed(annie,math,1) })

The transaction answer, obtained according to Definition 13, is
Set(T, Z) = {(0, {school:+move(john,sch2)})}.

Next, the active part semantics must be computed. The purified intensional
databases are

6 As a shorthand, in the following we write S to stand for all elements in {john,
mary, frank}, £ for all elements in {engl, math, phys}, G for all elements in {math,
cs}, K for all elements in {hamlet, principia}, 7 for all elements in {pat, annie},
and D for all elements in {school, lib, sch2}.

31

ﬁ?schooﬁ student (S), exam(E)—pass(S,E).

ID/\BlitF

ID/\Bsch2=

student (S) —leave(S).
student (S) >transfer(S,T).

request (X,U) ,book(B) —deny_loan(B,U).
loan(B,Y) ,user(U) —deny_loan(B,U).
loan(B,U) »return(B,U).

undergr (S) —student (S) .

phd (S) —student (S).

student (S) ,exam(E,N) ,units _passed(S,E,N) —passed(S,E).
student (S) ,exam(E,N) »pass_unit(S,E,1).

student (S) ,exam(E,2) ,units passed(S,E,1) »pass_unit(S,E,2).

Therefore, the p-set for E and the updates U = {school :+move(john, sch2)},
obtained from Set(T,E), is

p(E,U) = { school:student(S), school : exam(E)— school : pass(S, E),

school : student(S)— school :leave(S),
school : student(S)— school :transfer(S,T),
school : —student(S), school : passed(S, E)— school : —passed(S, E),
lib:request(X, U),lib: book(B)—lib:deny_loan(B,U),
lib:loan(B,Y), lib:user(U)—lib:deny_loan(B,U),
lib:loan(B,U)—lib:return(B,U),
lib: —user(U),lib:loan(B,U)—lib: +request(B,U),
lib: —loan(B,U),lib:request(B,U)—lib: —request(B,U),
sch2:undergr(S)—sch2: student(S),
sch2:phd(S)— sch2: student(S),
sch2:student(S), sch2:exam(E, N), sch2:units_passed(S, E, N)—
sch2:passed(S, E),
sch2: student(S), sch2:exam(E, N)— sch2:pass_unit(S, E, 1),
sch2: student(S), sch2:exam(E,2), sch2:units_passed(S, E,1)—
sch2:pass_unit(S, E,2),
school : +student(S)—lib: +user(S),
school : — student(S)—1ib: —user(S),
school : +passed(S, E), lib:loan(S, B),lib: sect(E, B)—
lib:+request(B, S),
school : +move(S, sch2)— school : —student(S), sch2: +undergr(S),
school : +move(S, sch2), school : passed(S, E), sch2 =exam(E, N)—
sch2:+units_passed(S, E,N),
sch2:4+undergr(S)—lib: +user(S),
sch2: —undergr(S)—lib: —user(S),
—school : +move(john, sch2) '}

The corresponding e-set s

e(E) = { school: student(john), school: student(mary), school: student(frank),

school :exam(engl), school:exam(math), school :exam(phys),

32

school : passed(john, engl), school:passed(john,math),

school : passed(mary, phys), school:passed(frank,engl),
lib:user(john), lib:user(mary), lib:user(frank), lib:user(pat),
lib:book(hamlet), lib:book(principia), lib: sect(engl, hamlet),
lib:loan(hamlet, john), lib:loan(principia, frank),
sch2:undergr(pat), sch2:phd(annie), sch2:exam(math,2),
sch2:exam(cs, 1), sch2:units_passed(pat,math,?2),
sch2:units_passed(annie, math, 1), sch2:units_passed(annie,cs, 1)

}

We assume an inertial conflict resolution policy (see Section 4.2) that does
not use the mapping f : L — Dom. Therefore we leave f undefined. The com-
putation of the system semantics through the A operator proceeds as follows:

AL ez ssel((0:6(5)) = (0, [= £(5))

Al (_,U)fse|(<® e(2))) = (0, I, = I U{ school :pass(S,E),
school :leave(S), school :transfer(S, D),
lib:deny_loan(hamlet, S),
lib:deny_loan(hamlet, pat),
lib:deny_loan(principia, S),
lib:return(principia, frank), sch2: student(T),
school : +move(john, sch2) })

A? “ED), fse|(<® e(2))) = (0, Is = I, U { sch2:pass_unit(T, G, 1),
sch2:pass_unit(annie, math, 2),
school : —student(john), sch2:+undergr(john),
sch2:4units_passed(john, math,2) })

Now, a conflict arises. Indeed:
I'= Fp(aﬁ)’@(lg) = I3 U{ school:—passed(john, engl),
school : —passed(john, math), lib: —user(john),
lib: +user(john) }.

The labeled atom object of the conflict is lib:user(john). The rule that tries
to insert it is ry =sch2:+undergr(S) — lib:+user(S), with grounding
substitution {S<—john}; the rule that tries to remove it is

r9 =school:-student (S)— 1lib:-user(S), with the same grounding
substitution. Both rules belong to the AR set. Since we are using the inertial
conflict resolution policy, sel(e(Z), p(Z,U), f,I', (lib:user (john), {(r1,{S +
john})}, {(ra, {S < john})}) = insert, thus blocking (rq,{S<john}). The
computation proceeds without further conflicts, restarting from the
bi-structure (B = {(re, {S<john})},e(Z)).

33

Al (_,U)fsel(«b e(E)) = (B,)
A (H,U)fsel(«b £(2))) = (B, Iy)
Al (_,U)fsel(@ e(2))) = (B, I5)

A® (=D, fsel(@ e(2))) = (B, Iy = I3 U { school: —passed(john, engl),
school : —passed(john, math), lib:+user(john)

h
Aol (0530 = Ao el ((0,2(2))
Hence the fixpoint is reached.

After performing update incorporation (Definition 29), the new state EDB' of
the system is

EDB. .., = student (mary). student (frank) .
exam(engl) . exam(math) . exam(phys) .
passed(mary,math). passed(frank,engl).
move (john,sch2).

EDB!;, = user(mary). user (john) .
user (frank) . user(pat).
book (hamlet) . book (principia).
sect(engl,hamlet). sect(phys,principia).
loan(john,hamlet). loan(principia,frank).

EDB!_, = undergr(pat). undergr(john) . phd(annie).
exam(math,2). exam(cs,1).
units_passed(pat,math,2). units_passed(annie,math,1).
units_passed(annie,cs,1). units_passed(john,math,2).

and the final observable is Obs' = (), EDB', Commit).

By looking at the new state of the system, we can see that now John is an
undergraduate student of school sch2 and he is still a user of the library.
However, he lost his English exam because such a course is not taught in the
school sch2. O

5 Conclusions and future work

In this paper, we defined a logical language supporting cooperative queries,
updates, and update propagation. We model the sources of information as de-
ductive databases, sharing the same logical language to express queries and up-

34

dates, but containing independent, even if possibly related, data. The language
used to model data sources has been obtained by extending the Obj-U-Datalog
language [5] to deal with active rules in the style of Active-U-Datalog [4,22],
whose semantics has been defined according to the PARK semantics proposed
in [23]. The use of Obj-U-Datalog enables cooperative query answering and
distributed transaction execution among different data sources, whereas active
rules perform update propagation and consistency maintenance. The proposed
framework results in a uniform integration of active and deductive rules to
model cooperation.

This work can be extended in several ways. A first important question is
related to the definition and analysis of properties concerning execution of
distributed queries, transactions and active rules. A second direction concerns
various extensions to the proposed language, such as the introduction of nega-
tion in the deductive part of a HU-Datalog system and constructs for modeling
more complex events. Finally, since a HU-Datalog database, when ignoring up-
dates and active rules, represents a particular amalgamated knowledge base,
as defined in [44], another interesting topic is the extension of the general
amalgamated knowledge base framework to deal with updates and actions.

As concluding remark we would like to comment on the relations between our
work and recent work on agent technology. Even though it is difficult to pre-
cisely define what an agent is, we can consider an agent as “a self-contained
program capable of controlling its own decision-making and acting, based on
its perception of its environment, in pursuit of one or more objectives” [28].
More specifically, an agent should be characterized by a number of key prop-
erties including: social ability — referring to the ability to interact with other
agents and/or humans; autonomy — referring to the control an agent should
have over its own actions and internal state; reactivity — referring to the abil-
ity of an agent to react to changes that occur in the agent state and in the
environment. The object model we have developed in this work satisfies all
these key properties. In particular, in our model, an object is characterized by
a state and a mechanism to perform queries and modifications to the object
state. Moreover, objects can communicate with other objects, also according
to unanticipated modalities, through the use of labeled atoms. Since labels can
also be variables, both static and dynamic communication channels among ob-
jects are supported. Finally, objects are able to react to events through the
use of active rules. We plan to investigate the use of our object model as a
foundation for agent technology dealing with intelligent information manage-
ment.

35

References

[1] S. Abiteboul and V. Vianu. A Transaction Language Complete for Database
Updates and Specification. In Proc. of the Seventh ACM SIGACT-SIGMOD-
SIGART Symp. on Principles of Database Systems, pages 260-268, 1987.

[2] S. Abiteboul and V. Vianu. Procedural and Declarative Database Update

Languages. In Proc. of the Fighth ACM SIGACT-SIGMOD-SIGART Symp.
on Principles of Database Systems, pages 240-250, 1988.

[3] ANSI TC X3H2 and ISO/IEC JTC 1/SC 21/WG 3. Master Index for SQL and
all its Parts, March 1966. Document X3H2-96-066 DBL:MCI-011.

[4] E. Bertino, B. Catania, V. Gervasi, and A. Raffaeta. Active-U-Datalog:
Integrating Active Rules in a Logical Update Language. In B. Freitag,
H. Decker, M. Kifer, and A. Voronkov, editors, LNCS 1472: Transactions and
Change in Logic Databases, pages 106-132, 1998.

[5] E. Bertino, G. Guerrini, and D. Montesi. Toward Deductive Object Databases.
Theory and Practice of Object Systems, 1(1):19-39, 1995.

[6] E.Bertino, M. Martelli, and D. Montesi. Transactions and Updates in Deductive
Databases. IEEE Transactions on Knowledge and Data Engineering, 9(5):784-
797, 1997.

[7] A.J. Bonner and M. Kifer. An Overview of Transaction Logic. Theoretical
Computer Science, 133(2):205-265, 1994.

[8] O.A. Bukhres and A. Elmagarmid, editors. Object-Oriented Multidatabase
Systems. Prentice-Hall, 1996.

[9] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer-
Verlag, Berlin, 1990.

[10] S. Ceri and J. Widom. Deriving Incremental Production Rules for Deductive
Data. Information Systems, 19(6):467-490, 1994.

[11] S. Ceri and J. Widom. Managing Semantic Heterogeneity with Production
Rules and Persistent Queues. In R. Agrawal, S. Baker, and D.A. Bell, editors,
Proc. of the Int. Conf. on Very Large Data Bases, pages 108-119, 1993.

[12] S.S. Chawathe, H. Garcia-Molina, and J. Widom. A Toolkit for Constraint
Management in Heterogeneous Information Systems. In S.Y.W. Su, editor,
Proc. of the IEEE Int. Conf. on Data Engineering, pages 56-65, 1996.

[13] W. Chen. Declarative Specification and Evaluation of Database Updates. In
C. Delobel, M. Kifer, and Y. Masunaga, editors, LNCS 566: Proc. of the Int.
Conf. on Deductive and Object Oriented Databases, pages 147-166, 1991.

[14] W. Chen. Programming with Logical Queries, Bulk Updates, and Hypothetical
Reasoning. IEEFE Transactions on Knowledge and Data Engineering, 9(4):587—
599, 1997.

36

[15] U. Dayal, A.P. Buchmann, and S. Chakravarthy. The HiPAC Project. In S.
Ceri and J. Widom, editors, Active Database Systems, pages 177-206. Morgan
Kauffman, 1996.

[16] L.M.L. Delcambre and J.N. Etheredge. The Relational Procedural Language: A
Production Language for Relational Databases. In L. Kerschberg, editor, Proc.
of the Second Int. Conf. on Expert Database Systems, pages 333-351, 1988.

[17] Digital Equipment Corporation. Rdb/VMS - SQL Reference Manual, November
1991.

[18] L. Do and P. Drew. Active Database Management of Global Data Integrity
Constraints in Heterogeneous Database Environments. In P.S. Yu and A.L.P.
Chen, editors, Proc. of the Int. Conf. on Data Engineering, pages 99-108, 1995.

[19] A. Elmagarmid, editor. Database Transaction Models for Advanced
Applications. Morgan Kaufmann Publishers, 1993.

[20] A.A.A. Fernandes, M.H. Williams, and N.W. Paton. A Logic-Based Integration
of Active and Deductive Databases. New Generation Computing, 15(2):205-244,
1997.

[21] N. Gehani and H.V. Jagadish. Ode as an Active Database: Constraints and
Triggers. In G.M. Lohman, A.Sernadas, and R. Camps, editors, Proc. of the
Seventeenth Int. Conf. on Very Large Data Bases, pages 327-336, 1991.

[22] V. Gervasi and A. Raffaetd. Active-U-Datalog: Integrating Active Rules in
a Deductive Database. Technical Report 97-19, Dipartimento di Informatica,
Pisa, Italy, 1997.

[23] G. Gottlob, G. Moerkotte, and V.S. Subrahmanian. The PARK Semantics for
Active Rules. In P.M.G. Apers, M. Bouzeghoub, and G. Gardarin, editors,
LNCS 1057: Proc. of the Fifth Int. Conf. on Extending Database Technology,
pages 35-55, 1996.

[24] J. Gray and A. Reuter. Transaction Processing Concepts and Techniques.
Morgan-Kaufmann, 1993.

[25] G. Guerrini and D. Montesi. Design and Implementation of Chimera Active
Rules. Int. Journal on Data and Knowledge Engineering, 24(1):39-67, 1997.

[26] A. Gupta, M. P. Reddy, and M. Siegel. Towards an Active Schema Integration
Architecture for Heterogeneous Database Systems. In H.J. Schek, A.P. Sheth,
and B.D. Czejdo, editors, Proc. of the IEEE Int. Workshop on Research Issues
in Data Engineering: Interoperability in Multidatabase Systems (RIDE-IMS93),
pages 178-183, 1993.

[27] E. Hanson. The Design and Implementation of the Ariel Active Database Rule
System. IEEE Transactions on Knowledge and Data Engineering, 8(1): 157-172,
1996.

[28] N. R. Jennings and M. Woldridge. Software Agents. IEEE Review, pages 17-20,
January 1996.

37

[29] Kirkwood. Sybase Architecture and Administration. Prentice-Hall, 1993.

[30] P. Kolaitis and C. Papadimitriou. Why Not Negation by Fixpoint? Journal of
Computer and System Sciences, 43(1):125-144, 1991.

[31] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[32] B. Ludéscher, U. Hamann, and G. Lausen. A Logical Framework for Active
Rules. In Proc. of the Seventh Int. Conf. on Management of Data (COMAD),
1995.

[33] B. Ludéischer, W. May, and G. Lausen. Nested Transactions in a Logical
Languages for Active Rules. In D. Pedreschi and C. Zaniolo, editors, LNCS
1154: Proc. of the Int. Workshop on Logic in Databases, pages 197-222, 1996.

[34] S. Manchanda. Declarative Expression of Deductive Database Updates. In Proc.
of the SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems,
pages 93-100, 1989.

[35] S. Manchanda and D.S. Warren. A Logic-Based Language for Database
Updates. In J. Minker, editor, Foundations of Deductive Databases and Logic
Programming, pages 363-394. Morgan-Kaufmann, 1988.

[36] D. R. McCarhy and U. Dayal. The Architecture of an Active Database
Management System. In J. Cliffors, B.G. Lindsay, and D. Maier, editors, Proc.
of the Int. Conf. on Extending Data Base Technology, pages 215-224, 1989.

[37] D. Montesi and R. Torlone. A Transaction Transformation Approach to Active
Rule Processing. In P.S. Yu and A.L.P. Chen, editors, Proc. of the Eleventh
Int. Conf. on Data Engineering, pages 109-116, 1995.

[38] S. Naqvi and S. Tsur. A Logical Language for Data and Knowledge Bases.
Computer Science Press, 1989.

[39] Oracle Corp. Oracle 7 Server Concepts Manual, 7.3. Oracle Corp., February
1996.

[40] H.J. Schek, A. Sheth, and B. Czejdo, editors, Proc. of the IEEE Int. Workshop
on Research Issues in Data FEngineering: Interoperability in Multidatabase
Systems (RIDE-IMS93), 1993.

[41] M. Stonebraker. The Ingres Papers. Addison-Wesley, Reading MA, 1986.

[42] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On Rules, Procedures,
Caching and Views in Data Base Systems. In H.G. Molina and H.V. Jagadish,
editors, Proc. of the ACM SIGMOD Conf. on Management of Data, pages 281—
290, 1990.

[43] M. Stonebraker and G. Kemnitz. The POSTGRES Next-Generation Database
Management System. Communications of the ACM, 34(10):78-92, October
1991.

[44] V. S. Subrahmanian Amalgamating Knowledge Bases. ACM Transactions on
Database Systems, 19(2):291-331, 1994.

38

[45] C.A. Wichert and B. Freitag. Capturing Database Dynamics by Deferred
Updates. In Proc. of the Int. Conf. on Logic Programming, pages 226—240,
1997.

[46] J. Widom, R. J. Cochrane, and B. G. Lindsay. Implementing Set-oriented
Production Rules as an Extension to Starburst. In G.M Lohman, A. Sernadas,
and R. Camps, editors, Proc. of the Seventeenth Int. Conf. on Very Large Data
Bases, pages 275-285, 1991.

[47] J. Widom and S. Finkelstein. Set-oriented Production Rules in Relational
Databases. In H.G. Molina and H.V. Jadadish, editors, Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 259-270, 1990.

[48] G. Wiederhold. Mediators in the Architecture of Future Information Systems.
IEEE Computer, 25:38-49, 1992.

[49] C. Zaniolo. A Unified Semantics for Active and Deductive Databases. In
N. W. Paton and M. H. Williams, editors, Proc. of the First Int. Workshop
on Rules in Database Systems, pages 271-287, 1993.

39

