
28	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y � 074 0 -74 5 9 /17/ $ 3 3 . 0 0 © 2 017 I E E E

FEATURE: SOFTWARE REQUIREMENTS

REQUIREMENTS ARE GENERALLY
expressed with the most human of
the communication codes: natural
language (NL). In requirements en-
gineering (RE), natural language

processing (NLP) techniques can be
applied to a wide range of tasks.1
Here, we discuss the relevant re-
search applications of NLP to RE
and propose a 4D framework that

provides the conceptual lenses to un-
derstand the interplay between the
two areas.

The first dimension is discipline,
with NLP being used for defect de-
tection. The second is dynamism,
with NLP employed for traceabil-
ity and categorization. The third is
domain knowledge, because NLP
can help users identify domain ex-
perts and surf knowledge sources.
The fourth, crucial, challenging, and
cross-cutting dimension is datasets,
because modern NLP techniques are
data hungry and datasets are still
scarce in RE.

Discipline
Requirements are an abstract con-
ceptualization of system needs that’s
inherently open to interpretation.
This openness is emphasized by the
intrinsic ambiguity of the NL used
to express requirements. On the
other hand, as the requirements pro-
cess progresses, requirements are ex-
pected to be unequivocal enough to
be interpreted in the same way by
all the stakeholders who deal with
them. The key for writing unequivo-
cal requirements is discipline.

Several software development
standards, such as CENELEC-50128
for railway software, DO-178C
for avionics, and IEEE Standard
830TM-1998 (R2009), touch on
the issue of a writing discipline in
requirements development. Look-
ing at different aspects, they ask re-
quirements to be unequivocal. How-
ever, none of them provide language
guidelines to facilitate agreement on
the requirements’ interpretation.

This lack of guidance lets require-
ments editors put into practice their
individual vision of a writing disci-
pline. The adherence to a self-defined
rigorous style reflecting the editor’s
mind-set could lead to a somewhat

Natural
Language
Requirements
Processing
A 4D Vision

Alessio Ferrari, CNR-ISTI

Felice Dell’Orletta, CNR-ILC

Andrea Esuli, CNR-ISTI

Vincenzo Gervasi, University of Pisa

Stefania Gnesi, CNR-ISTI

// The future evolution of the application of

natural language processing technologies

in requirements engineering can be viewed

from four dimensions: discipline, dynamism,

domain knowledge, and datasets. //

	 NOVEMBER/DECEMBER 2017 | IEEE SOFTWARE � 29

personal jargon, with acrobatic cir-
cumlocutions. This might appear to
enforce precision but, given the poor
readability, often encourages free-
dom of interpretation instead.

In this scenario, how can we hope
for a common standard, or set of
standards, for writing requirements?
The RE research community has
suggested employing NLP tools that
make editors aware of their require-
ments’ ambiguity. This ambiguity
might cause inconsistencies between
customer expectations and the de-
veloped product, possibly leading to
undesirable rework on the product.

A large body of RE literature
presents technical solutions to iden-
tify ambiguous expressions (“as pos-
sible,” “taking into account,” and so
on)2 and anaphoric constructions,3
for which readers might interpret
pronouns differently. For example,
in “when the system sends a mes-
sage to the receiver, it will provide
an acknowledgment,” does “it”
mean the system or the receiver?
More recently, researchers have pro-
posed solutions for detecting prag-
matic ambiguities,4 which depend
on the reader’s background knowl-
edge. These solutions aim to answer
questions such as, will a customer
and developer interpret the require-
ment the same way? In our previous
example, a customer with no techni-
cal background might interpret “re-
ceiver” as a human subject, whereas
a developer will likely consider “re-
ceiver” as a software component.

Less explored in RE, but still rel-
evant, is requirements readability—
the text’s ability to be easily under-
stood. This is associated with the
complexity of the text’s terminology
and syntax. NLP research on read-
ability and text simplification is on-
going,5 and scientists plan to tailor
this research for RE.

We foresee that leading compa-
nies’ wider use of ambiguity checks
and readability solutions will cause
writing standards to emerge. This, in
turn, will mitigate common editing
mistakes. We also predict that these
technologies’ use will find a bal-
ance between the degree of abstrac-
tion and a requirement’s expected
readers. Indeed, user- and high-level

technical requirements might exhibit
some uncertainty, and overly strict
ambiguity checks might be undesir-
able. Conversely, lower-level tech-
nical requirements should be ambi-
guity free, in some cases exhibiting
poor readability but high precision.
So, during software development,
NL requirements will evolve into
different forms that might need dif-
ferent treatments. This evolutionary
characteristic leads us to the next di-
mension: dynamism.

Dynamism
During development, requirements
are discussed, justified, renegoti-
ated, and refined, gradually evolv-
ing into executable artifacts. This
evolution’s trace must be identi-
fied and controlled, to ensure that
the product implements each high-
level requirement the customer
agreed on. Traceability is the disci-
pline of cross-linking requirements
with other requirements, possibly
at a different abstraction level, and
with other artifacts of the software

process—models, software compo-
nents, and tests. In a sense, trace-
ability links form the network con-
trolling the inherent dynamism of
requirements and software-related
artifacts.

Researchers have employed NLP
to help define traceability links from
scratch6 and update them7 when
novel requirements enter into play.

Moreover, NLP has been used to
ensure regulatory compliance by au-
tomatically tracing requirements to
multiple NL regulations.8

Another prominent task that re-
lates to dynamism is requirements
categorization, which helps manage
large numbers of requirements and
drives the apportionment of require-
ments to specific software compo-
nents. Moreover, categorizing re-
quirements also supports their reuse
in different projects.

Researchers have developed auto-
mated tools to incrementally catego-
rize types of nonfunctional NL re-
quirements and partition them into
nonfunctional categories (security,
availability, maintainability, usabil-
ity, and so on).9 Such technologies
can help identify nonfunctional re-
quirements that might be hidden in
large numbers of functional ones.
Moreover, approaches have been
tested to partition functional NL
requirements into functional cat-
egories (communication protocols,
user interfaces, and so on).10 These

Modern NLP techniques are data
hungry, and datasets are still scarce

in requirements engineering.

30	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SOFTWARE REQUIREMENTS

TEXT-TO-KNOWLEDGE
Text-to-Knowledge (T2K; t2k.italianlp​
.it) is a web app for extracting domain-
specific information from unstructured
text in English or Italian.1 T2K renders
relevant domain entities in a knowl-
edge graph, an intuitive visual format
that eases identifying relations among
entities. When applied to require-
ments, the app supports glossary defi-
nition and domain scoping and allows
browsing of complex requirements
documents in a topic-based, personal-
ized way.

Figure A shows the results of ap-
plying T2K to requirements from the
railway domain.2 First, T2K automati-
cally generates a structured glossary
from the original document (see
Figure A1). The user sees the term
“Push-to-Talk” and searches for it in
Wikipedia (see Figure A2). Once the
user gains an overview of the con-
cept’s meaning, he or she goes back
to T2K. After browsing the entities
that include the string “Push-to-Talk,”
the user selects “push-to-talk but-
ton,” which he or she feels might have
something to do with the “momentary
button” mentioned in Wikipedia. The
user visualizes the relations of that en-
tity and others extracted from the orig-
inal document. Considering the “thick
gloves” entity interesting, the user
asks T2K to show the requirements in
which “push-to-talk button” occurs with
“thick gloves” (see Figure A3). Finally, the
user expands the graph on the “one-handed operation” node and continues surfing the document, following the additional rela-
tions discovered (see Figure A4).

References
1.	 F. Dell’Orletta et al., “T2K: A System for Automatically Extracting and Organizing Knowledge from Texts,” Proc. 9th Int’l Conf. Language Resources

and Evaluation (LREC 14), 2014, pp. 2062–2070.

2.	 EIRENE Functional Requirements Specification Version 7.4.0, GSM-R Functional Group, 2014; www.uic.org/IMG/pdf/p0028d003.4r0.4-7.4.0.pdf.

(1) (2)

(3) (4)

FIGURE A. Applying the Text-to-Knowledge (T2K) web app to a railway

requirements standard. (1) The app creates a glossary of domain-specific entities for

the document. (2) The user employs the glossary entities as pointers to surf the web

or internal repositories, to identify associated domain-specific information. (3) The

user selects an entity on which to focus and visualizes its relations with other entities

in the requirements. From this representation, the user can go back to the original

document, to browse the entities’ textual context. (4) The user expands the graph on

interesting nodes, to continue surfing the requirements.

	 NOVEMBER/DECEMBER 2017 | IEEE SOFTWARE � 31

techniques are particularly useful
during the transition from require-
ments to architectural design, when
different requirements must be ap-
portioned to functional components.

The assessment of requirements
traces and categories implies veri-
fication that an automatically re-
trieved trace or category is correct.
It also implies a deep understand-
ing of the project context and a clear
knowledge of the meaning of the re-
quirements’ NL content. So, the au-
tomated mechanisms we discussed
require a domain expert in the loop.
This observation opens up the next
dimension: domain knowledge.

Domain Knowledge
Requirements belong to different
domains with technical or domain-
specific jargons. When a require-
ments analyst, or a developer, who
isn’t confident with the domain has
to interpret domain-specific require-
ments, he or she will likely go knock
on the requirements editor’s door to
ask for explanations. The door might
be physical (for example, when the
editor is in the same workplace) or
virtual (for example, when he or she
is reachable through phone calls or
email). Sometimes, the door might be
behind so many other doors that it’s
unreachable, and the analyst or devel-
oper doesn’t really know who holds
the right information. In that case,
the analyst or developer must acquire
the necessary domain knowledge by
browsing the Internet or reading the
available internal documentation.

Jane Cleland-Huang suggested
applying NLP and data-mining tech-
niques that extract domain-specific
terms, clustering them by common
topics, and then manually label-
ing them, to define a personalized
conceptual map to scope the do-
main of interest.11 Some advanced

NLP techniques let users not only
find topic clusters but also discover
fine-grained relationships among
relevant terms. For a discussion of
one such technique, see the sidebar,
“Text-to-Knowledge.”

Domain knowledge is also needed
for requirements elicitation. In this
phase, a system’s requirements are
still concealed in their sources, such
as the system stakeholders, other po-
tentially reusable requirements avail-
able to the company, or competing
products’ public documentation.

NLP can help in these cases.
Some recommender systems help ex-
ploit stakeholders’ domain knowl-
edge and direct them to appropriate
requirements discussion forums.12
Some approaches support the reuse
of internal NL requirements,13 thus
leveraging the domain knowledge
encoded in them. Finally, recom-
mender systems exist that exploit
domain knowledge embedded in
marketing material.14 Given an NL
description of a novel product to de-
velop, these systems suggest addi-
tional features derived from online
descriptions of competing products.

All these NLP approaches need
large amounts of NL data to work
properly. So, let’s go to our final di-
mension: datasets.

Datasets
Traditional NLP approaches relied
on the assumption that language
was dominated by regularities,
which could be listed in the form
of rules that could extract relevant
information from a text, catego-
rize documents, or find relations
among sentences. That assumption
was wrong. Instead, machine learn-
ing (ML) approaches emerged that
extract statistical information from
large amounts of documents and,
in a sense, learn the inherent rules

of language without explicitly list-
ing them.

ML approaches need datasets.
In our context, a dataset is a col-
lection of requirements with anno-
tations providing task-dependent
semantic information about them.
For example, in a categorization
task, each requirement is annotated
with its category; for ambiguity de-
tection, annotations mark the text’s
ambiguous parts. A human normally
performs the annotation. An ML al-
gorithm aims to predict the annota-
tion, either on the basis of a subset of
the annotated data, as in the case of
supervised learning, or without rely-
ing on the existing annotations, as in
the case of unsupervised learning.

ML approaches have been used
in NL requirements for tasks such
as requirements classification, iden-
tification of equivalent requirements,
ambiguity detection, and traceabil-
ity. Nevertheless, most of these re-
sults aren’t generalizable because
each study focused on a limited set
of requirements in a specific domain.
Indeed, not many requirements data-
sets covering multiple domains are
publicly available, and researchers
must work with a lack of resources.
Generalization is a key issue because
a technique might not work well in
different domains, given the differ-
ent terminologies and processes and
the absence of a common discipline.

To address this dataset scarcity,
the Center of Excellence for Soft-
ware Traceability (CoEST; coest.org)
provides a page containing require-
ments annotated for traceability.
We encourage similar initiatives for
other NL-related requirements tasks.
Still, it’s worth keeping in mind three
reasons why requirements datasets
are scarce.

First, requirements annotation
requires domain expertise. Because

32	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SOFTWARE REQUIREMENTS

domain knowledge is a problem in
companies, it’s even a harsher prob-
lem for researchers who are NLP ex-
perts but have limited expertise in
application domains. This problem
requires these researchers to provide
annotation tools that domain experts
in the companies can use produc-
tively. For example, Mercedes Benz
employs a categorization tool that
suggests categories to users while
learning how to better categorize.15

Second, requirements often be-
long to companies and are confiden-
tial. Stand-off markup technologies
(wiki.tei-c.org/index.php/Stand-off
_markup), which separate annota-

tions from the text, can help solve
this problem. With these technolo-
gies, companies can retain the re-
quirements’ text but share the text’s
annotated features (such as sentence
structure, relevant terms, and the re-
quirement’s class), which researchers
can use in their experiments.

Finally, the use of requirements—
especially in a disciplined, common
form that can ease interdomain com-
parison of NLP technologies—isn’t
that common in software develop-
ment practice. The solution involves
a hidden dimension of the problem,
which is dissemination. As research-
ers, we’re well aware that the proper

dissemination of the role of require-
ments within companies is para-
mount to realize our vision, which
we describe next.

Our Vision
What will be the state of the practice
if the research in the four dimensions
we described comes to fruition? We
can formulate an initial answer by
charting the technologies available in
an NLP-supported iterative require-
ments process (see Figure 1). NLP
can be applied from requirements
elicitation to analysis, in which do-
main knowledge has more impact,
and from validation to management,
in which discipline and dynamism
are more relevant. But how long will
it be before we see that process, and
what forces will shape this vision?
Let’s look at a 10-year perspective.

Discipline
A rigorous writing standard will
gradually surface in specific do-
mains. This will be driven by not
only NLP tools for discipline—
researchers have recently developed
automated approaches that combine
template conformance and ambigu-
ity checking16—but also the current
state of the market. Applications
tend to emerge as the integration of
different services and components,
developed by different companies. To
match multiple providers’ function-
alities and to support requirements
communication among globally dis-
tributed stakeholders, a common re-
quirements language, possibly com-
plemented with graphical languages
similar to AUTOSAR (Automotive
Open System Architecture; www​
.autosar.org), is inevitable.

Discipline is also already emerg-
ing for specific domain-independent
requirements formats. User stories
adopted in agile methods will conform

Domain knowledge

Market analysis

Retrieval of internal
requirements

Stakeholder
identi�cation

Domain term
identi�cation

Domain scoping

Ambiguity

Readability

ComplianceCategorization

Traceability

Management

Dynamism

Datasets

AnalysisElicitation

Validation

Di
sc

ip
lin

e

FIGURE 1. How the four dimensions (discipline, dynamism, domain knowledge, and

datasets) fit a software requirements process supported by natural language processing

(NLP). During requirements elicitation, NLP can help identify stakeholders, internal

requirements, and existing product features. During requirements analysis, automated

glossary definition and support for domain scoping can be provided. During validation,

NLP can identify requirements defects and regulatory compliance. As the process

continues, NLP can also make traceability and classification easier.

	 NOVEMBER/DECEMBER 2017 | IEEE SOFTWARE � 33

to well-defined templates, and re-
searchers are developing promising
quality evaluation approaches.17

Dynamism
Requirements management tools will
implement NLP to handle dynamism.
Traceability and categorization tech-
niques are based mainly on comput-
ing NL similarity between require-
ments. They are among the most
mature in research and will likely be-
come industry-ready in short term.15
The driving force here is the recent
widespread diffusion of word embed-
dings in NLP (see the sidebar “Distri-
butional Semantic Models and Word
Embeddings”). These are semantic-
laden word representations that are
modeled through observation of a
word’s linguistic context; they can
improve the computation of NL simi-
larity by boosting context awareness.
Although these techniques haven’t
been applied yet in RE, we conjec-
ture that their introduction in tasks
that are already mature will provide a
breakthrough in dynamism.

Domain Knowledge
More domain knowledge will be
accessible through human-centered
tools. NL-intensive and knowledge-
rich collaborative tools, such as
Slack, Trello, or Workplace by Face-
book, produce vast repositories of
NL knowledge. NLP tools will mine
these and other internal sources of
diffused knowledge to identify key
expertise and will provide structured
access to such knowledge. Intelligent
question-answering systems will le-
verage available knowledge to reply
to domain-specific questions. A tan-
gible reference in this sense is IBM’s
Watson, which in 2011 beat human
players on the Jeopardy! quiz show.
Watson’s services were recently made
available to the large public within

DISTRIBUTIONAL
SEMANTIC MODELS

AND WORD EMBEDDINGS
Distributional semantic models (DSMs) follow Zellig Harris’s distributional hy-
pothesis that “a word is characterized by the company it keeps.”1 DSMs focus on
acquiring the semantics of words through statistical analysis of their use in lan-
guage. DSM research dates back to the 1990s but has recently gained renewed
interest, owing especially to the successful application of neural-network models
to the task.

One of the most popular results is word2vec,2 which creates word embed-
dings (WEs)—numeric vectors that capture words’ semantic and syntactic
properties. WEs are the by-product of the training of a neural network that pre-
dicts the most probable word given a set of context words. Training contexts are
usually sampled from a large collection of text (for example, Wikipedia), without
requiring human annotation.

WE vectors find application in word-relatedness problems, such as finding
the words similar to a given one by picking the words whose vectors are closer to
the given one (see a demo at radimrehurek.com/2014/02/word2vec-tutorial). For
example, the sum of the vectors for “Germany” and “capital” is a vector close to
the vector of “Berlin.” 2

WE vectors can also be an effective substitute for the typical feature-engineering
process, in which many natural language processing (NLP) tools enrich the rep-
resentation of text (performing part-of-speech tagging, lemmatization, and dis-
ambiguation). When working in specific domains, which occurs frequently in re-
quirements engineering, NLP tools might perform poorly because they’re usually
trained on non-domain-specific examples. Training an NLP tool on a new domain
requires a human-labeled training set, whereas word2vec needs only plain text
from that domain to capture the domain-specific use of language.

So, WEs are a low-cost tool to model the domain-specific relations between
terms. For example, they can help spot potential sources of ambiguities, leverag-
ing on the observed term similarities to converge on a unified lexicon. Similarly,
comparing WEs generated for the same domain but from documents from differ-
ent stakeholders (for example, developers or users) can support the identification
of terms whose semantics differ among the stakeholders, thus avoiding misun-
derstandings between them.

References
1.	 Z.S. Harris, “Distributional Structure,” Word, vol. 32, no. 3, 1954, pp. 146–162.

2.	�T. Mikolov et al., “Distributed Representations of Words and Phrases and Their Composi-

tionality,” Proc. 2013 Conf. Advances in Neural Information Processing Systems (NIPS 13),

2013, pp. 3111–3119.

34	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SOFTWARE REQUIREMENTS

the Bluemix project (www.ibm.com
/cloud-computing/bluemix/watson).

Also crucial will be the develop-
ment of domain-specific ontologies,
which are formal representations of
concepts and relations in a domain.
Such representations will likely be a
formal basis for supporting traceabil-
ity and categorization and will thus
also positively impact dynamism.

Datasets
Providing datasets is the most rel-
evant challenge the RE community
must address. The growth of pub-
licly available datasets is slow, and
it’s hard to imagine the interdomain
generalization of current NLP tech-
niques in 10 years. Nevertheless,
the tight collaboration between re-
searchers and industries and the
availability of NLP tools that can be
inexpensively trained on the job will
help tailor current NLP techniques
to specific contexts and domains.

Naturally, this requires more dia-
logue between NLP and RE. Soft-
ware companies should hire people
with an NLP background and train
their personnel in NLP. A first, sim-
ple step would be asking their re-
quirements engineers to download
and start playing with GATE (Gen-
eral Architecture for Test Engineer-
ing; gate.ac.uk), an engineer-friendly
tool for text analysis with extensive
documentation. Requirements engi-
neers more inclined toward coding
can go for software libraries such as
the Python Natural Language Tool-
kit (NLTK; www.nltk.org) or Apache
OpenNLP (opennlp.apache.org).

E ach company has a require-
ments process adapted to its
size, its products’ safety in-

tegrity level, and its degree of special-
ization in its domain. So, we foresee

that NLP techniques for RE will be
supported by a process-cognizant,
component-based infrastructure that
can be tailored to a company’s domi-
nant needs. For example, dynamism
and discipline are essential for safety-
critical systems, whereas domain
knowledge technologies are crucial
for consumer products. In this sense,
the torch passes to software engi-
neers, who must design such a cus-
tomizable platform, picking the tech-
nologies from those we discussed and
enabling their combination on the ba-
sis of the process in Figure 1.

Of course, NLP will support only
those RE aspects that are dominated
by NL. Tacit knowledge, sociocul-
tural issues, design decisions, UI re-
quirements, and hybrid control sys-
tems requirements are just a small
set of RE problems and artifacts in
which NL plays a collateral role. To
account for these aspects will require
means that transcend NLP capabili-
ties. Nevertheless, when planning
investments in model-based tech-
niques or agile methods, companies
should keep in mind that, within a
few years, NLP will be able to ex-
tract much more information from
prescriptive statements, user stories,
textual use cases, and all the forms
NL requirements can take.

References
1.	A. Casamayor, D. Godoy, and M.

Campo, “Mining Textual Re-

quirements to Assist Architectural

Software Design: A State of the Art

Review,” Artificial Intelligence Rev.,

vol. 38, no. 3, 2012, pp. 173–191.

2.	B. Gleich, O. Creighton, and L. Kof,

“Ambiguity Detection: Towards a

Tool Explaining Ambiguity Sources,”

Requirements Engineering: Founda-

tion for Software Quality, LNCS

6182, Springer, 2010, pp. 218–232.

3.	H. Yang et al., “Analysing Anaphoric

Ambiguity in Natural Language Re-

quirements,” Requirements Eng., vol.

16, no. 3, 2011, pp. 163–189.

4.	A. Ferrari and S. Gnesi, “Using Col-

lective Intelligence to Detect Prag-

matic Ambiguities,” Proc. 20th IEEE

Int’l Requirements Eng. Conf. (RE

12), 2012, pp. 191–200.

5.	K. Collins-Thompson, “Computa-

tional Assessment of Text Readabil-

ity: A Survey of Current and Future

Research,” Int’l J. Applied Linguis-

tics, vol. 165, no. 2, 2014, pp. 97–135.

6.	H. Sultanov and J.H. Hayes, “Appli-

cation of Reinforcement Learning to

Requirements Engineering: Require-

ments Tracing,” Proc. 21st IEEE

Int’l Requirements Eng. Conf. (RE

13), 2013, pp. 52–61.

7.	V. Gervasi and D. Zowghi, “Sup-

porting Traceability through Affinity

Mining,” Proc. 22nd IEEE Int’l

Requirements Eng. Conf. (RE 14),

2014, pp. 143–152.

8.	J. Cleland-Huang et al., “A Machine

Learning Approach for Tracing Regu-

latory Codes to Product Specific Re-

quirements,” Proc. 32nd ACM/IEEE

Int’l Conf. Software Eng. (ICSE 10),

2010, pp. 155–164.

9.	A. Casamayor, D. Godoy, and M.

Campo, “Identification of Non-

functional Requirements in Textual

Specifications: A Semi-supervised

Learning Approach,” Information

and Software Technology, vol. 52,

no. 4, 2010, pp. 436–445.

10.	A. Casamayor, D. Godoy, and M.

Campo, “Functional Grouping of

Natural Language Requirements for

Assistance in Architectural Software

Design,” Knowledge-Based Systems,

June 2012, pp. 78–86.

11.	J. Cleland-Huang, “Mining Domain

Knowledge,” IEEE Software, vol. 32,

no. 3, 2015, pp. 16–19.

12.	C. Castro-Herrera et al., “A Recom-

mender System for Requirements

Elicitation in Large-Scale Software

	 NOVEMBER/DECEMBER 2017 | IEEE SOFTWARE � 35

Projects,” Proc. 2009 ACM Symp.

Applied Computing (SAC 09), 2009,

pp. 1419–1426.

13.	V. Alves et al., “An Exploratory

Study of Information Retrieval Tech-

niques in Domain Analysis,” Proc.

12th Int’l Software Product Line

Conf. (SPLC 08), 2008, pp. 67–76.

14.	J.-M. Davril et al., “Feature Model

Extraction from Large Collections

of Informal Product Descriptions,”

Proc. 9th Joint Meeting Foundations

of Software Eng. (ESEC/FSE 13),

2013, pp. 290–300.

15.	E. Knauss and D. Ott, “(Semi-) au-

tomatic Categorization of Natural

Language Requirements,” Require-

ments Engineering: Foundation

for Software Quality, LNCS 8396,

Springer, 2014, pp. 39–54.

16.	C. Arora et al., “Automated Checking

of Conformance to Requirements Tem-

plates Using Natural Language Pro-

cessing,” IEEE Trans. Software Eng.,

vol. 41, no. 10, 2015, pp. 944–968.

17.	G. Lucassen et al., “Forging High-

Quality User Stories: Towards a Dis-

cipline for Agile Requirements,” Proc.

23rd IEEE Int’l Requirements Eng.

Conf. (RE 15), 2015, pp. 126–135.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

ALESSIO FERRARI is a research fellow

at CNR-ISTI (Consiglio Nazionale delle

Ricerche—Istituto di Scienza e Tecnologia

dell’Informazione). His research focuses

on natural language processing applied to

requirements engineering. Ferrari received

a PhD in computer engineering from the

University of Florence. Contact him at

alessio.ferrari@isti.cnr.it.

VINCENZO GERVASI is an associate pro-

fessor in the University of Pisa’s Computer

Science Department. His research focuses

on natural language processing applied

to requirements engineering, formal

specifications, and software architectures.

Gervasi received a PhD in computer sci-

ence from the University of Pisa. Contact

him at gervasi@di.unipi.it.

FELICE DELL’ORLETTA is a research

scientist at CNR-ILC (Consiglio Nazionale

delle Ricerche—Istituto di Linguistica

Computazionale) and head of the ItaliaNLP

Lab. His research focuses on natural

language processing and knowledge

extraction. Dell’Orletta received a PhD in

Informatics from the University of Pisa.

Contact him at felice.dellorletta@ilc.cnr.it.

STEFANIA GNESI is a director of re

search at CNR-ISTI (Consiglio Nazionale

delle Ricerche—Istituto di Scienza e

Tecnologia dell’Informazione) and the head

of the Formal Methods && Tools Group.

Her research focuses on formal methods

applied to requirements engineering. Gnesi

received a master’s in computer science

from the University of Pisa. Contact her at

stefania.gnesi@isti.cnr.it

ANDREA ESULI is a research scientist

at CNR-ISTI (Consiglio Nazionale delle

Ricerche—Istituto di Scienza e Tecnologia

dell’Informazione). His research focuses

on machine-learning technologies applied

to natural language processing. Esuli

received a PhD in information engineering

from the University of Pisa. Contact him at

andrea.esuli@isti.cnr.it.

