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FEATURE: SOFTWARE REQUIREMENTS

REQUIREMENTS ARE GENERALLY 
expressed with the most human of 
the communication codes: natural 
language (NL). In requirements en-
gineering (RE), natural language 

processing (NLP) techniques can be 
applied to a wide range of tasks.1 
Here, we discuss the relevant re-
search applications of NLP to RE 
and propose a 4D framework that 

provides the conceptual lenses to un-
derstand the interplay between the 
two areas.

The first dimension is discipline, 
with NLP being used for defect de-
tection. The second is dynamism, 
with NLP employed for traceabil-
ity and categorization. The third is 
domain knowledge, because NLP 
can help users identify domain ex-
perts and surf knowledge sources. 
The fourth, crucial, challenging, and 
cross-cutting dimension is datasets, 
because modern NLP techniques are 
data hungry and datasets are still 
scarce in RE.

Discipline
Requirements are an abstract con-
ceptualization of system needs that’s 
inherently open to interpretation. 
This openness is emphasized by the 
intrinsic ambiguity of the NL used 
to express requirements. On the 
other hand, as the requirements pro-
cess progresses, requirements are ex-
pected to be unequivocal enough to 
be interpreted in the same way by 
all the stakeholders who deal with 
them. The key for writing unequivo-
cal requirements is discipline.

Several software development 
standards, such as CENELEC-50128 
for railway software, DO-178C 
for avionics, and IEEE Standard 
830TM-1998 (R2009), touch on 
the issue of a writing discipline in 
requirements development. Look-
ing at different aspects, they ask re-
quirements to be unequivocal. How-
ever, none of them provide language 
guidelines to facilitate agreement on 
the requirements’ interpretation.

This lack of guidance lets require-
ments editors put into practice their 
individual vision of a writing disci-
pline. The adherence to a self-defined 
rigorous style reflecting the editor’s 
mind-set could lead to a somewhat 
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personal jargon, with acrobatic cir-
cumlocutions. This might appear to 
enforce precision but, given the poor 
readability, often encourages free-
dom of interpretation instead.

In this scenario, how can we hope 
for a common standard, or set of 
standards, for writing requirements? 
The RE research community has 
suggested employing NLP tools that 
make editors aware of their require-
ments’ ambiguity. This ambiguity 
might cause inconsistencies between 
customer expectations and the de-
veloped product, possibly leading to 
undesirable rework on the product.

A large body of RE literature 
presents technical solutions to iden-
tify ambiguous expressions (“as pos-
sible,” “taking into account,” and so 
on)2 and anaphoric constructions,3 
for which readers might interpret 
pronouns differently. For example, 
in “when the system sends a mes-
sage to the receiver, it will provide 
an acknowledgment,” does “it” 
mean the system or the receiver? 
More recently, researchers have pro-
posed solutions for detecting prag-
matic ambiguities,4 which depend 
on the reader’s background knowl-
edge. These solutions aim to answer 
questions such as, will a customer 
and developer interpret the require-
ment the same way? In our previous 
example, a customer with no techni-
cal background might interpret “re-
ceiver” as a human subject, whereas 
a developer will likely consider “re-
ceiver” as a software component.

Less explored in RE, but still rel-
evant, is requirements readability—
the text’s ability to be easily under-
stood. This is associated with the 
complexity of the text’s terminology 
and syntax. NLP research on read-
ability and text simplification is on-
going,5 and scientists plan to tailor 
this research for RE.

We foresee that leading compa-
nies’ wider use of ambiguity checks 
and readability solutions will cause 
writing standards to emerge. This, in 
turn, will mitigate common editing 
mistakes. We also predict that these 
technologies’ use will find a bal-
ance between the degree of abstrac-
tion and a requirement’s expected 
readers. Indeed, user- and high-level 

technical requirements might exhibit 
some uncertainty, and overly strict 
ambiguity checks might be undesir-
able. Conversely, lower-level tech-
nical requirements should be ambi-
guity free, in some cases exhibiting 
poor readability but high precision. 
So, during software development, 
NL requirements will evolve into 
different forms that might need dif-
ferent treatments. This evolutionary 
characteristic leads us to the next di-
mension: dynamism.

Dynamism
During development, requirements 
are discussed, justified, renegoti-
ated, and refined, gradually evolv-
ing into executable artifacts. This 
evolution’s trace must be identi-
fied and controlled, to ensure that 
the product implements each high-
level requirement the customer 
agreed on. Traceability is the disci-
pline of cross-linking requirements 
with other requirements, possibly 
at a different abstraction level, and 
with other artifacts of the software 

process—models, software compo-
nents, and tests. In a sense, trace-
ability links form the network con-
trolling the inherent dynamism of 
requirements and software-related 
artifacts.

Researchers have employed NLP 
to help define traceability links from 
scratch6 and update them7 when 
novel requirements enter into play. 

Moreover, NLP has been used to 
ensure regulatory compliance by au-
tomatically tracing requirements to 
multiple NL regulations.8

Another prominent task that re-
lates to dynamism is requirements 
categorization, which helps manage 
large numbers of requirements and 
drives the apportionment of require-
ments to specific software compo-
nents. Moreover, categorizing re-
quirements also supports their reuse 
in different projects.

Researchers have developed auto-
mated tools to incrementally catego-
rize types of nonfunctional NL re-
quirements and partition them into 
nonfunctional categories (security, 
availability, maintainability, usabil-
ity, and so on).9 Such technologies 
can help identify nonfunctional re-
quirements that might be hidden in 
large numbers of functional ones. 
Moreover, approaches have been 
tested to partition functional NL 
requirements into functional cat-
egories (communication protocols, 
user interfaces, and so on).10 These 

Modern NLP techniques are data 
hungry, and datasets are still scarce 

in requirements engineering.
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TEXT-TO-KNOWLEDGE
Text-to-Knowledge (T2K; t2k.italianlp​
.it) is a web app for extracting domain-
specific information from unstructured 
text in English or Italian.1 T2K renders 
relevant domain entities in a knowl-
edge graph, an intuitive visual format 
that eases identifying relations among 
entities. When applied to require-
ments, the app supports glossary defi-
nition and domain scoping and allows 
browsing of complex requirements 
documents in a topic-based, personal-
ized way.

Figure A shows the results of ap-
plying T2K to requirements from the 
railway domain.2 First, T2K automati-
cally generates a structured glossary 
from the original document (see 
Figure A1). The user sees the term 
“Push-to-Talk” and searches for it in 
Wikipedia (see Figure A2). Once the 
user gains an overview of the con-
cept’s meaning, he or she goes back 
to T2K. After browsing the entities 
that include the string “Push-to-Talk,” 
the user selects “push-to-talk but-
ton,” which he or she feels might have 
something to do with the “momentary 
button” mentioned in Wikipedia. The 
user visualizes the relations of that en-
tity and others extracted from the orig-
inal document. Considering the “thick 
gloves” entity interesting, the user 
asks T2K to show the requirements in 
which “push-to-talk button” occurs with 
“thick gloves” (see Figure A3). Finally, the 
user expands the graph on the “one-handed operation” node and continues surfing the document, following the additional rela-
tions discovered (see Figure A4).

References
1.	 F. Dell’Orletta et al., “T2K: A System for Automatically Extracting and Organizing Knowledge from Texts,” Proc. 9th Int’l Conf. Language Resources 

and Evaluation (LREC 14), 2014, pp. 2062–2070.

2.	 EIRENE Functional Requirements Specification Version 7.4.0, GSM-R Functional Group, 2014; www.uic.org/IMG/pdf/p0028d003.4r0.4-7.4.0.pdf.
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FIGURE A. Applying the Text-to-Knowledge (T2K) web app to a railway 

requirements standard. (1) The app creates a glossary of domain-specific entities for 

the document. (2) The user employs the glossary entities as pointers to surf the web 

or internal repositories, to identify associated domain-specific information. (3) The 

user selects an entity on which to focus and visualizes its relations with other entities 

in the requirements. From this representation, the user can go back to the original 

document, to browse the entities’ textual context. (4) The user expands the graph on 

interesting nodes, to continue surfing the requirements.
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techniques are particularly useful 
during the transition from require-
ments to architectural design, when 
different requirements must be ap-
portioned to functional components.

The assessment of requirements 
traces and categories implies veri-
fication that an automatically re-
trieved trace or category is correct. 
It also implies a deep understand-
ing of the project context and a clear 
knowledge of the meaning of the re-
quirements’ NL content. So, the au-
tomated mechanisms we discussed 
require a domain expert in the loop. 
This observation opens up the next 
dimension: domain knowledge.

Domain Knowledge
Requirements belong to different 
domains with technical or domain-
specific jargons. When a require-
ments analyst, or a developer, who 
isn’t confident with the domain has 
to interpret domain-specific require-
ments, he or she will likely go knock 
on the requirements editor’s door to 
ask for explanations. The door might 
be physical (for example, when the 
editor is in the same workplace) or 
virtual (for example, when he or she 
is reachable through phone calls or 
email). Sometimes, the door might be 
behind so many other doors that it’s 
unreachable, and the analyst or devel-
oper doesn’t really know who holds 
the right information. In that case, 
the analyst or developer must acquire 
the necessary domain knowledge by 
browsing the Internet or reading the 
available internal documentation.

Jane Cleland-Huang suggested 
applying NLP and data-mining tech-
niques that extract domain-specific 
terms, clustering them by common 
topics, and then manually label-
ing them, to define a personalized 
conceptual map to scope the do-
main of interest.11 Some advanced 

NLP techniques let users not only 
find topic clusters but also discover 
fine-grained relationships among 
relevant terms. For a discussion of 
one such technique, see the sidebar, 
“Text-to-Knowledge.”

Domain knowledge is also needed 
for requirements elicitation. In this 
phase, a system’s requirements are 
still concealed in their sources, such 
as the system stakeholders, other po-
tentially reusable requirements avail-
able to the company, or competing 
products’ public documentation.

NLP can help in these cases. 
Some recommender systems help ex-
ploit stakeholders’ domain knowl-
edge and direct them to appropriate 
requirements discussion forums.12 
Some approaches support the reuse 
of internal NL requirements,13 thus 
leveraging the domain knowledge 
encoded in them. Finally, recom-
mender systems exist that exploit 
domain knowledge embedded in 
marketing material.14 Given an NL 
description of a novel product to de-
velop, these systems suggest addi-
tional features derived from online 
descriptions of competing products.

All these NLP approaches need 
large amounts of NL data to work 
properly. So, let’s go to our final di-
mension: datasets.

Datasets
Traditional NLP approaches relied 
on the assumption that language 
was dominated by regularities, 
which could be listed in the form 
of rules that could extract relevant 
information from a text, catego-
rize documents, or find relations 
among sentences. That assumption 
was wrong. Instead, machine learn-
ing (ML) approaches emerged that 
extract statistical information from 
large amounts of documents and, 
in a sense, learn the inherent rules 

of language without explicitly list-
ing them.

ML approaches need datasets. 
In our context, a dataset is a col-
lection of requirements with anno-
tations providing task-dependent 
semantic information about them. 
For example, in a categorization 
task, each requirement is annotated 
with its category; for ambiguity de-
tection, annotations mark the text’s 
ambiguous parts. A human normally 
performs the annotation. An ML al-
gorithm aims to predict the annota-
tion, either on the basis of a subset of 
the annotated data, as in the case of 
supervised learning, or without rely-
ing on the existing annotations, as in 
the case of unsupervised learning.

ML approaches have been used 
in NL requirements for tasks such 
as requirements classification, iden-
tification of equivalent requirements, 
ambiguity detection, and traceabil-
ity. Nevertheless, most of these re-
sults aren’t generalizable because 
each study focused on a limited set 
of requirements in a specific domain. 
Indeed, not many requirements data-
sets covering multiple domains are 
publicly available, and researchers 
must work with a lack of resources. 
Generalization is a key issue because 
a technique might not work well in 
different domains, given the differ-
ent terminologies and processes and 
the absence of a common discipline.

To address this dataset scarcity, 
the Center of Excellence for Soft-
ware Traceability (CoEST; coest.org) 
provides a page containing require-
ments annotated for traceability. 
We encourage similar initiatives for 
other NL-related requirements tasks. 
Still, it’s worth keeping in mind three 
reasons why requirements datasets 
are scarce.

First, requirements annotation 
requires domain expertise. Because 
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domain knowledge is a problem in 
companies, it’s even a harsher prob-
lem for researchers who are NLP ex-
perts but have limited expertise in 
application domains. This problem 
requires these researchers to provide 
annotation tools that domain experts 
in the companies can use produc-
tively. For example, Mercedes Benz 
employs a categorization tool that 
suggests categories to users while 
learning how to better categorize.15

Second, requirements often be-
long to companies and are confiden-
tial. Stand-off markup technologies 
(wiki.tei-c.org/index.php/Stand-off 
_markup), which separate annota-

tions from the text, can help solve 
this problem. With these technolo-
gies, companies can retain the re-
quirements’ text but share the text’s 
annotated features (such as sentence 
structure, relevant terms, and the re-
quirement’s class), which researchers 
can use in their experiments.

Finally, the use of requirements—
especially in a disciplined, common 
form that can ease interdomain com-
parison of NLP technologies—isn’t 
that common in software develop-
ment practice. The solution involves 
a hidden dimension of the problem, 
which is dissemination. As research-
ers, we’re well aware that the proper 

dissemination of the role of require-
ments within companies is para-
mount to realize our vision, which 
we describe next.

Our Vision
What will be the state of the practice 
if the research in the four dimensions 
we described comes to fruition? We 
can formulate an initial answer by 
charting the technologies available in 
an NLP-supported iterative require-
ments process (see Figure 1). NLP 
can be applied from requirements 
elicitation to analysis, in which do-
main knowledge has more impact, 
and from validation to management, 
in which discipline and dynamism 
are more relevant. But how long will 
it be before we see that process, and 
what forces will shape this vision? 
Let’s look at a 10-year perspective.

Discipline
A rigorous writing standard will 
gradually surface in specific do-
mains. This will be driven by not 
only NLP tools for discipline—
researchers have recently developed 
automated approaches that combine 
template conformance and ambigu-
ity checking16—but also the current 
state of the market. Applications 
tend to emerge as the integration of 
different services and components, 
developed by different companies. To 
match multiple providers’ function-
alities and to support requirements 
communication among globally dis-
tributed stakeholders, a common re-
quirements language, possibly com-
plemented with graphical languages 
similar to AUTOSAR (Automotive 
Open System Architecture; www​
.autosar.org), is inevitable.

Discipline is also already emerg-
ing for specific domain-independent 
requirements formats. User stories  
adopted in agile methods will conform 
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FIGURE 1. How the four dimensions (discipline, dynamism, domain knowledge, and 

datasets) fit a software requirements process supported by natural language processing 

(NLP). During requirements elicitation, NLP can help identify stakeholders, internal 

requirements, and existing product features. During requirements analysis, automated 

glossary definition and support for domain scoping can be provided. During validation, 

NLP can identify requirements defects and regulatory compliance. As the process 

continues, NLP can also make traceability and classification easier.
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to well-defined templates, and re-
searchers are developing promising 
quality evaluation approaches.17

Dynamism
Requirements management tools will 
implement NLP to handle dynamism. 
Traceability and categorization tech-
niques are based mainly on comput-
ing NL similarity between require-
ments. They are among the most 
mature in research and will likely be-
come industry-ready in short term.15 
The driving force here is the recent 
widespread diffusion of word embed-
dings in NLP (see the sidebar “Distri-
butional Semantic Models and Word 
Embeddings”). These are semantic-
laden word representations that are 
modeled through observation of a 
word’s linguistic context; they can 
improve the computation of NL simi-
larity by boosting context awareness. 
Although these techniques haven’t 
been applied yet in RE, we conjec-
ture that their introduction in tasks 
that are already mature will provide a 
breakthrough in dynamism.

Domain Knowledge
More domain knowledge will be 
accessible through human-centered 
tools. NL-intensive and knowledge-
rich collaborative tools, such as 
Slack, Trello, or Workplace by Face-
book, produce vast repositories of 
NL knowledge. NLP tools will mine 
these and other internal sources of 
diffused knowledge to identify key 
expertise and will provide structured 
access to such knowledge. Intelligent 
question-answering systems will le-
verage available knowledge to reply 
to domain-specific questions. A tan-
gible reference in this sense is IBM’s 
Watson, which in 2011 beat human 
players on the Jeopardy! quiz show. 
Watson’s services were recently made 
available to the large public within 

DISTRIBUTIONAL 
SEMANTIC MODELS  

AND WORD EMBEDDINGS
Distributional semantic models (DSMs) follow Zellig Harris’s distributional hy-
pothesis that “a word is characterized by the company it keeps.”1 DSMs focus on 
acquiring the semantics of words through statistical analysis of their use in lan-
guage. DSM research dates back to the 1990s but has recently gained renewed 
interest, owing especially to the successful application of neural-network models 
to the task.

One of the most popular results is word2vec,2 which creates word embed-
dings (WEs)—numeric vectors that capture words’ semantic and syntactic 
properties. WEs are the by-product of the training of a neural network that pre-
dicts the most probable word given a set of context words. Training contexts are 
usually sampled from a large collection of text (for example, Wikipedia), without 
requiring human annotation.

WE vectors find application in word-relatedness problems, such as finding 
the words similar to a given one by picking the words whose vectors are closer to 
the given one (see a demo at radimrehurek.com/2014/02/word2vec-tutorial). For 
example, the sum of the vectors for “Germany” and “capital” is a vector close to 
the vector of “Berlin.” 2

WE vectors can also be an effective substitute for the typical feature-engineering 
process, in which many natural language processing (NLP) tools enrich the rep-
resentation of text (performing part-of-speech tagging, lemmatization, and dis-
ambiguation). When working in specific domains, which occurs frequently in re-
quirements engineering, NLP tools might perform poorly because they’re usually 
trained on non-domain-specific examples. Training an NLP tool on a new domain 
requires a human-labeled training set, whereas word2vec needs only plain text 
from that domain to capture the domain-specific use of language.

So, WEs are a low-cost tool to model the domain-specific relations between 
terms. For example, they can help spot potential sources of ambiguities, leverag-
ing on the observed term similarities to converge on a unified lexicon. Similarly, 
comparing WEs generated for the same domain but from documents from differ-
ent stakeholders (for example, developers or users) can support the identification 
of terms whose semantics differ among the stakeholders, thus avoiding misun-
derstandings between them.
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the Bluemix project (www.ibm.com 
/cloud-computing/bluemix/watson).

Also crucial will be the develop-
ment of domain-specific ontologies, 
which are formal representations of 
concepts and relations in a domain. 
Such representations will likely be a 
formal basis for supporting traceabil-
ity and categorization and will thus 
also positively impact dynamism.

Datasets
Providing datasets is the most rel-
evant challenge the RE community 
must address. The growth of pub-
licly available datasets is slow, and 
it’s hard to imagine the interdomain 
generalization of current NLP tech-
niques in 10 years. Nevertheless, 
the tight collaboration between re-
searchers and industries and the 
availability of NLP tools that can be 
inexpensively trained on the job will 
help tailor current NLP techniques 
to specific contexts and domains.

Naturally, this requires more dia-
logue between NLP and RE. Soft-
ware companies should hire people 
with an NLP background and train 
their personnel in NLP. A first, sim-
ple step would be asking their re-
quirements engineers to download 
and start playing with GATE (Gen-
eral Architecture for Test Engineer-
ing; gate.ac.uk), an engineer-friendly 
tool for text analysis with extensive 
documentation. Requirements engi-
neers more inclined toward coding 
can go for software libraries such as 
the Python Natural Language Tool-
kit (NLTK; www.nltk.org) or Apache 
OpenNLP (opennlp.apache.org).

E ach company has a require-
ments process adapted to its 
size, its products’ safety in-

tegrity level, and its degree of special-
ization in its domain. So, we foresee 

that NLP techniques for RE will be 
supported by a process-cognizant, 
component-based infrastructure that 
can be tailored to a company’s domi-
nant needs. For example, dynamism 
and discipline are essential for safety-
critical systems, whereas domain 
knowledge technologies are crucial 
for consumer products. In this sense, 
the torch passes to software engi-
neers, who must design such a cus-
tomizable platform, picking the tech-
nologies from those we discussed and 
enabling their combination on the ba-
sis of the process in Figure 1.

Of course, NLP will support only 
those RE aspects that are dominated 
by NL. Tacit knowledge, sociocul-
tural issues, design decisions, UI re-
quirements, and hybrid control sys-
tems requirements are just a small 
set of RE problems and artifacts in 
which NL plays a collateral role. To 
account for these aspects will require 
means that transcend NLP capabili-
ties. Nevertheless, when planning 
investments in model-based tech-
niques or agile methods, companies 
should keep in mind that, within a 
few years, NLP will be able to ex-
tract much more information from 
prescriptive statements, user stories, 
textual use cases, and all the forms 
NL requirements can take.

References
1.	A. Casamayor, D. Godoy, and M. 

Campo, “Mining Textual Re-

quirements to Assist Architectural 

Software Design: A State of the Art 

Review,” Artificial Intelligence Rev., 

vol. 38, no. 3, 2012, pp. 173–191.

2.	B. Gleich, O. Creighton, and L. Kof, 

“Ambiguity Detection: Towards a 

Tool Explaining Ambiguity Sources,” 

Requirements Engineering: Founda-

tion for Software Quality, LNCS 

6182, Springer, 2010, pp. 218–232.

3.	H. Yang et al., “Analysing Anaphoric 

Ambiguity in Natural Language Re-

quirements,” Requirements Eng., vol. 

16, no. 3, 2011, pp. 163–189.

4.	A. Ferrari and S. Gnesi, “Using Col-

lective Intelligence to Detect Prag-

matic Ambiguities,” Proc. 20th IEEE 

Int’l Requirements Eng. Conf. (RE 

12), 2012, pp. 191–200.

5.	K. Collins-Thompson, “Computa-

tional Assessment of Text Readabil-

ity: A Survey of Current and Future 

Research,” Int’l J. Applied Linguis-

tics, vol. 165, no. 2, 2014, pp. 97–135.

6.	H. Sultanov and J.H. Hayes, “Appli-

cation of Reinforcement Learning to 

Requirements Engineering: Require-

ments Tracing,” Proc. 21st IEEE 

Int’l Requirements Eng. Conf. (RE 

13), 2013, pp. 52–61.

7.	V. Gervasi and D. Zowghi, “Sup-

porting Traceability through Affinity 

Mining,” Proc. 22nd IEEE Int’l 

Requirements Eng. Conf. (RE 14), 

2014, pp. 143–152.

8.	J. Cleland-Huang et al., “A Machine 

Learning Approach for Tracing Regu-

latory Codes to Product Specific Re-

quirements,” Proc. 32nd ACM/IEEE 

Int’l Conf. Software Eng. (ICSE 10), 

2010, pp. 155–164.

9.	A. Casamayor, D. Godoy, and M. 

Campo, “Identification of Non-

functional Requirements in Textual 

Specifications: A Semi-supervised 

Learning Approach,” Information 

and Software Technology, vol. 52, 

no. 4, 2010, pp. 436–445.

10.	A. Casamayor, D. Godoy, and M. 

Campo, “Functional Grouping of 

Natural Language Requirements for 

Assistance in Architectural Software 

Design,” Knowledge-Based Systems, 

June 2012, pp. 78–86.

11.	J. Cleland-Huang, “Mining Domain 

Knowledge,” IEEE Software, vol. 32, 

no. 3, 2015, pp. 16–19.

12.	C. Castro-Herrera et al., “A Recom-

mender System for Requirements 

Elicitation in Large-Scale Software 



	 NOVEMBER/DECEMBER 2017 | IEEE SOFTWARE � 35

Projects,” Proc. 2009 ACM Symp. 

Applied Computing (SAC 09), 2009, 

pp. 1419–1426.

13.	V. Alves et al., “An Exploratory 

Study of Information Retrieval Tech-

niques in Domain Analysis,” Proc. 

12th Int’l Software Product Line 

Conf. (SPLC 08), 2008, pp. 67–76.

14.	J.-M. Davril et al., “Feature Model 

Extraction from Large Collections 

of Informal Product Descriptions,” 

Proc. 9th Joint Meeting Foundations 

of Software Eng. (ESEC/FSE 13), 

2013, pp. 290–300.

15.	E. Knauss and D. Ott, “(Semi-) au-

tomatic Categorization of Natural 

Language Requirements,” Require-

ments Engineering: Foundation 

for Software Quality, LNCS 8396, 

Springer, 2014, pp. 39–54.

16.	C. Arora et al., “Automated Checking 

of Conformance to Requirements Tem-

plates Using Natural Language Pro-

cessing,” IEEE Trans. Software Eng., 

vol. 41, no. 10, 2015, pp. 944–968.

17.	G. Lucassen et al., “Forging High-

Quality User Stories: Towards a Dis-

cipline for Agile Requirements,” Proc. 

23rd IEEE Int’l Requirements Eng. 

Conf. (RE 15), 2015, pp. 126–135.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

ALESSIO FERRARI is a research fellow 

at CNR-ISTI (Consiglio Nazionale delle 

Ricerche—Istituto di Scienza e Tecnologia 

dell’Informazione). His research focuses 

on natural language processing applied to 

requirements engineering. Ferrari received 

a PhD in computer engineering from the 

University of Florence. Contact him at 

alessio.ferrari@isti.cnr.it.

VINCENZO GERVASI is an associate pro-

fessor in the University of Pisa’s Computer 

Science Department. His research focuses 

on natural language processing applied 

to requirements engineering, formal 

specifications, and software architectures. 

Gervasi received a PhD in computer sci-

ence from the University of Pisa. Contact 

him at gervasi@di.unipi.it.

FELICE DELL’ORLETTA is a research 

scientist at CNR-ILC (Consiglio Nazionale 

delle Ricerche—Istituto di Linguistica 

Computazionale) and head of the ItaliaNLP 

Lab. His research focuses on natural 

language processing and knowledge 

extraction. Dell’Orletta received a PhD in 

Informatics from the University of Pisa. 

Contact him at felice.dellorletta@ilc.cnr.it.

STEFANIA GNESI is a director of re

search at CNR-ISTI (Consiglio Nazionale 

delle Ricerche—Istituto di Scienza e 

Tecnologia dell’Informazione) and the head 

of the Formal Methods && Tools Group. 

Her research focuses on formal methods 

applied to requirements engineering. Gnesi 

received a master’s in computer science 

from the University of Pisa. Contact her at 

stefania.gnesi@isti.cnr.it

ANDREA ESULI is a research scientist 

at CNR-ISTI (Consiglio Nazionale delle 

Ricerche—Istituto di Scienza e Tecnologia 

dell’Informazione). His research focuses 

on machine-learning technologies applied 

to natural language processing. Esuli 

received a PhD in information engineering 

from the University of Pisa. Contact him at 

andrea.esuli@isti.cnr.it.


