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Abstract 
In this paper, we report on our experiences of using 
lightweight formal methods for the partial validation of 
natural language (NL) requirements documents. We 
describe a case study based on part of NASA’s 
specification of the Node Control Software of the 
International Space Station, and apply to it our method of 
checking properties on models obtained by shallow 
parsing of natural language requirements. These 
experiences support our position that it is feasible and 
useful to perform automated analysis of requirements 
expressed in natural language. Indeed we identified a 
number of errors in our case study that were also 
independently discovered and corrected by NASA’s IV&V 
Facility in a subsequent version of the same document. 
The paper describes the techniques we used, the errors we 
found, and reflects on the lessons learned. 

Keywords: Natural language requirements, lightweight 
formal methods, requirements validation. 

 

1. Introduction: lightweight formal methods 
and requirements validation 

The use of lightweight formal methods has recently 
received increasing attention in the software development 
literature [Feather 1998; Jackson & Wing 1996]. In the 
context of requirements engineering (RE), we use the term 
“lightweight formal methods” to characterise those 
methods whose adoption cost is a small fraction of that of 
the overall RE process, including training, application and 
computational costs. Lightweight formal methods often 
perform partial analysis on partial specifications only 
[Easterbrook et al. 1998]. They do not require a 
commitment to translate an entire (informal) requirements 
document into a formal one, nor to maintain formal and 
informal versions of specifications in parallel [Kemmerer 
1990]. Moreover, as requirements specifications evolve 
during the early stages of the RE process, lightweight 
formal methods provide an opportunity for gradually 

validating requirements, paving the way for later 
introduction of more exhaustive and rigorous analysis if 
needed. 

 
A number of experiences have been reported on the use 

of lightweight formal methods. These range from their 
application to the very early stages of a development 
process (e.g., [Goldin & Berry 1997] who use lexical 
analysis to find abstractions in unstructured and 
uninterpreted text), to design support systems [Hesketh et 
al. 1998], and to reengineering applications on existing 
code [Murphy et al. 1995]. Others have studied the 
application of NL understanding techniques to the 
automatic extraction of models from NL requirements 
[Rolland 1992; Macias & Pulman 1993]. The application 
of lightweight methods to the analysis and validation of 
NL requirements is particularly appealing, since industrial 
practice shows that NL requirements are easier to evolve, 
maintain and discuss with (possibly non-technical) 
customers. However, it is often very difficult to prove 
properties such as correctness, consistency and minimality 
about NL requirements. This paper describes a real case 
study demonstrating the practical application of 
lightweight methods to analyse such requirements. 

 
The paper is structured as follows. We begin by 

providing some background to our case study, followed by 
a short presentation of our general framework for 
lightweight validation of natural language requirements. 
Then we describe the application of our framework to the 
case study, discuss our findings, and reflect on the lessons 
we learned. A short survey of related work and a 
discussion of future work conclude the paper. 

2. The case study 

We studied a fragment of a NASA Software 
Requirements Specification (SRS) for the Node Control 
Software (NCS) on the International Space Station [NASA 
1997]. The choice of this particular document was 
appealing because we assumed it to be of high quality 
(being the 12th release of those requirements, and subject 



 

to many inspections and revisions), and because parts of it 
had already been analyzed using different techniques, in 
related studies [Easterbrook et al. 1998; Russo et al. 1998; 
Russo et al. 1999]. 

 
The document, 250 pages long, is written mainly in 

narrative English, with several tables and the occasional 
schematic diagram interspersed in the text. The 3-page 
fragment we chose to analyze described one of the basic 
components of the Environmental Control function — 
Cabin Pressure Monitoring. The NCS continuously 
monitors the cabin pressure, and issues alarms if the 
measured pressure exceeds operating limits. This function 
can be disabled and enabled as part of Fault Detection, 
Isolation and Recovery (FDIR) procedures. 

 
The document is structured by NCS functions (e.g., 

Telemetry Control, Environmental Control, Time 
Management, etc.). Each function is described in terms of 
individual constituent components (e.g., Environmental 
Control includes pressure monitoring, air fan control, fire 
& smoke detection, etc.). Each of these components, in 
turn, is first introduced in general, narrative terms, and 
then detailed by describing its inputs, outputs and expected 
behaviour. 

3. Approach: validating natural language 
requirements 

Our approach to automatic partial validation of NL 
requirements is structured in a setup phase and a 
production phase. The setup phase includes the following 
activities: 

 
1. Defining a style, a structure and a language for the 

requirements document. This step can be meant either 
normatively, i.e. as the production of a prescriptive 
style manual for the requirements document (and in 
this case a syntax-guided editor can be used to support 
requirements writing), or descriptively, i.e. as an 
adaptation of the capabilities of a parsing tool to an 
already existing document written in a defined style 
(as in the case of the experience we report here). 

2. Selecting desirable properties to check. Which 
properties of a certain document or system described 
in a document are “interesting” depends on the 
particular context of the analysis. As is common with 
lightweight formal methods, partial validation is 
usually acceptable at this stage. 

3. Defining one or more models on which the properties 
selected in the previous step can be checked. 
Properties are always relative to models, i.e. 
abstractions of the document or of the system 
described in it, which collect in an analyzable 
structure the information needed to check the 

property. For example, a connection property among 
system components can be checked on a model 
describing all the communications among system 
components. 

 
Once the setup phase has been completed, the 

production phase can be iterated at any stage of 
development of the requirements — without incurring any 
significant additional cost, as we will show later. The 
production phase of our approach includes: 

 
4. Pre-processing the requirements document, to handle 

format, structure and typographical details and to 
translate the requirements document to a canonical 
form amenable to later processing. 

5. Parsing the NL text of the requirements, leading to an 
analyzable representation of the semantic content of 
the text. Again, parsing can be (and usually is) partial, 
to help in reducing the cost of the validation, as long 
as that does not interfere with the collection of the 
information needed to perform the validation. 

6. Building the models defined in step 3 above, using the 
information collected during the parsing process. It is 
possible to build models of the requirements 
document (for example, distribution of topics among 
sections of the document) and of the system described 
by the requirements (for example, a model of the 
communication paths in a distributed system). 

7. Checking that the models satisfy chosen properties. 
As in the previous step, it is possible to check 
properties of the document (in our previous example, 
consistency of topics inside a single section) and of 
the system (for example, the existence of disjoint 
components in the communication paths model).  

8. Evaluating findings and revising the requirements 
specification accordingly. It is particularly important 
that the validation checks provide as much detail as 
possible about the point and the reason of a failure 
(i.e., on the circumstances in which a validation 
property was violated). Similarly to the 
counterexamples provided by some full formal 
methods, this information helps the requirements 
engineer to identify and fix errors that cause 
violations. 

 
This process offers a number of advantages in an 

industrial setting. Steps 1-3 are reusable across projects, as 
each organization tends to adopt defined internal standards 
for document style (step 1) and quality control (steps 2 and 
3). Moving these standards into a tool is an effective way 
to accumulate the organizational knowledge and expertise 
in a safe and structured way, and to have it applied in a 
deterministic and reproducible manner during the 
production phase. Also, steps 4-7 are entirely automatic, 
leaving step 8 only for the requirements engineer to 
consider at each iteration. 



 

4. Experience: application of approach to the 
case study 

In this section we describe the details of our experience 
with the case study, according to the structure of the 
process outlined above. Since — due to logistic 
considerations — we had to work alongside NASA’s 
standard verification and validation process, and not inside 
it, we only ran a single iteration of our production phase. 
Also, we analyzed three major revisions of the 
requirements document in “batch mode”. This is not the 
best possible setting for lightweight validation, which is 
actually better suited for continuous application during 
requirements evolution between minor revisions. 
However, this unfavorable setting offered the opportunity 
to compare our findings with those of a traditional V&V 
process as performed by NASA (mostly inspection); the 
results of this comparison will be described in the next 
section. 

4.1. Instantiating the approach 

1. Defining a style, structure and language. The NCS 
specification exhibited a consistent style and structure 
(conforming to DOD-STD-2167A), and was of 
overall good structural quality [Fabbrini et al. 1998]. 
The language used in the detailed descriptions of each 
function was concerned mainly with (fairly complex) 
temporal ordering of input and output events, but also 
included user interface and other technical issues1 that 
influenced the kind of language used. On the other 
hand, the narrative text was much more elaborate 
from a linguistic point of view, but since it was 
intended merely as an explanation of the technical text 
in the engineering part (that served as the definitive 
reference), it added no information on its own, and 
thus was not relevant to our analysis. 

 
We adopted a shallow parsing approach for 

extracting information from the NL text. Shallow 
parsing is a lightweight text analysis method that 
performs a (potentially) partial analysis of the 
linguistic structures in a text. We used the Cico 
domain-based parser [Ambriola & Gervasi 1997], a 
tool based on fuzzy matching of sentence fragments to 
templates, with a rule set specifically developed for 
the language used in the NCS specification. Building 
this rule set required no more than two days of work 

                                                           
1 As an extreme example, some of the functions described had to 

behave differently depending on the orbital position of the space station, 
as expressed by an orbit diagram included in the text. It is typical of 
lightweight formal methods (and thus of partial validation) that none of 
the models really need to “understand” the details behind such a diagram, 
and in our case study we could simply treat a change in orbital position as 
an unexplained event. 

by one of the authors. Given the highly specialized 
language used in the document, 30 rules (in addition 
to the generic rules already provided by the tool) were 
sufficient to obtain complete parsing of three different 
revisions of the document. 

 
2. Selecting desirable properties to check. Given that 

most of the requirements dealt with assigning certain 
values to specific output lines upon the occurrence of 
some event, we decided to perform “black-box” 
validation of the requirements. In particular, we were 
interested in the possible values that each output line 
could assume. Some of the properties we selected at 
this stage (those that uncovered problems in the 
specification) are presented later. Formally, input and 
output lines were described in terms of associated data 
items, whose value could change outside system 
control (for input lines) and whose assignment caused 
side effects (for output lines). 

 
3. Defining models for checking selected properties. All 

the properties we defined could be checked on the 
four models described below: 
• the kind of data item (KIND) model, distinguishing 

constant values from internal variables and I/O 
items. Formally, ∀ d ∈ DataItems, kind(d) is either 
CONST (a constant value), FLAG (an internal 
variable) or IO (an input/output line). 

• the default values (DEFVAL) model, showing only 
the default or initialization value of data items, as 
declared in the requirements. Formally, ∀ d ∈ 
DataItems, defval(d) is either UNDEF (no 
initialization value was specified by the 
requirements) or a set of specific literal values.2 

• the value space (VALSPACE) model, collecting all 
the assignments described in the requirements to 
determine the space of all the possible values for a 
data item. Formally, ∀ d ∈ DataItems, valspace(d) 
is the set of all values whose assignment to d or 
whose comparison with the value of d is mentioned 
in the requirements. 

• the event-condition-action table (ECATAB) model, 
collecting all the possible actions of the system, 
together with the conditions and events that cause 
their execution. Formally, ∀ r ∈ Requirements, 
ecatab(r) = { < events, conditions, actions > } 
where events and conditions are predicates on the 

                                                           
2 No initializations with non-literal values were specified in our 

requirements, but if present, they could have been treated as an 
assignment to be performed unconditionally upon a “Boot” event in the 
ECATAB model. Notice also that although defval(d) is specified as a set, 
a double initialization with different values would have been regarded as 
an error in the requirements (∀ d ∈ DataItems, #defval(d)=1 was one of 
the desirable properties). In our case study, this property was never 
violated, and defval(d) always resulted in a singleton. 



 

value of members of DataItems, while actions is a 
set of actions (either assignments to members of 
DataItems or the special actions “Acquire d”, 
signifying the assignment to d of a value read from 
an input device, and “Reject d”, indicating the 
rejection of a command according to the bus 
protocol, with d∈DataItems), as specified by 
requirement r. 
 

We used the Circe environment [Ambriola & Gervasi 
1997] to provide tool support for the production phase. 
Circe is a Web-based environment for the automated 
analysis of requirements written in natural language. The 
environment supports the extraction of models from the 
requirements, their validation, and the collection of metric 
data about the requirements document, the system 
described in it and about the requirements writing process 
itself. 

 

4. Pre-processing the requirements document. The text 
of the requirements was simply copied and pasted 
from the original Word document into our tool, and 
needed very little manual preprocessing (e.g., 
commenting out section titles and changing 
enumerated lists to bulleted lists). Such preprocessing 
could have been performed automatically if the 
document size had required it. 

 

5. Parsing of the NL text. The parsing technique we 
adopted required that a glossary be defined containing 
domain-specific terms. This task was accomplished by 
populating the glossary with: 
• the names of the various data items from the 

input/output tables included in the specification 
document, 

• the name of the system itself (“NCS”), and 
• a few other names that were used in the 

requirements (even though they were not declared 
as input or output data or command names). 
 

The parsing process in itself provided a language 
validation of the requirements. No spelling or 
syntactic errors were found, supporting our 
assumption that the requirements were of good 
syntactic quality [Krogstie et al. 1995] with respect to 
the language defined by our parsing rules. Obviously, 

only a partial assessment of the semantic quality 
defined in the same work was performed, by formally 
validating the models as described below. 

 

6. Building models. The task of building the four models 
defined in step 3 was carried out by a small number of 
modelers, i.e. plug-ins of Circe’s modular 
architecture. The logic needed to build these models, 
implemented as additional modules of the existing 
tool, was less than 100 lines of AWK [Aho et al. 
1988] code. 

 

7. Checking that the models satisfy chosen properties. 
The properties we selected were analyzed by a 
number of specialized validators (also implemented 
as plug-ins for Circe), each only a few lines of code 
long. Many of the chosen properties, mostly 
concerning “obvious” completeness and consistency 
criteria, were never violated, and are not reported 
here. Violations that led to the identification of real 
problems in the specification are discussed in some 
detail in the following. 

4.2. Findings of the validation 

As mentioned above, the VALSPACE model collected 
all the values mentioned in the requirements as assignable 
to each data item, either as default values or by explicit 
statements. One of the properties we wanted to verify on 
this collection was simply that every non-constant data 
item had more than a single possible value, or 

 

∀ d ∈ DataItems, kind(d) ≠ CONST ⇒ #valspace(d) ≥ 2 
 

We found six different data items (listed in Table 1) 
that did not satisfy this simple property. Closer inspection 
triggered by this finding revealed that several data items 
whose labels started with “ACS N1-2” were synonyms to 
other data items whose names started with “ACS N1S2” — 
with the N1-2 label (probably) left over from previous 
releases. We had originally interpreted these as distinct 
data items, as the SRS document contained many other 
distinct data items with only slight variations in their 
names. 



 

Table 1: Data items failing VALSPACE validation. 

Data item name (d) valspace(d) Reason 
“ACS N1-2 Cabin Pressure Lower Limit 
Warning State” 

{TRUE} Synonym with “ACS N1S2 Cabin Pressure 
Lower Limit Warning State”. 

“ACS N1S2 Cabin Pressure Upper Limit 
Warning State” 

{FALSE} Synonym with “ACS N1-2 Cabin Pressure 
Lower Limit Warning State”. 

“High pressure warning level alarm” {“return to normal”} Alarms issued, not set; also synonym with 
the “Upper limit” alarm. 

“Low pressure warning level alarm” {“return to normal”} Alarms issued, not set; also synonym with 
the “Lower limit” alarm. 

“Upper limit warning level alarm” {“return to normal”} Alarms issued, not set; also synonym with 
the “High pressure” alarm. 

“Lower limit warning level alarm” {“return to normal”} Alarms issued, not set; also synonym with 
the “Low pressure” alarm. 

We also had to revise our understanding of the alarm 
handling by the system. The document used the wording 
issue an alarm to indicate entrance into an alarm state, and 
set alarm to “return to normal” to indicate exiting from an 
alarm state. We had originally taken these as unrelated 
operations. Inspection of the relevant section of the SRS 
document confirmed that issuing an alarm should be 
interpreted as setting an alarm to “in alarm” — a change 
in interpretation that was reflected by a simple update of 
the parsing rule for issue in our rule set. 

 

Another issue related to alarms was that the SRS 
referred to the same alarm in different ways. For example 
(letters refers to requirements in the SRS): 

 
 d. (The NCS shall) issue a warning level alarm 

(message: “Node 1 Cabin Pressure Lower 
Limit Warning Violation”) 

 e. (The NCS shall) set the lower limit warning 
level alarm to “return to normal” 

 j. (The NCS shall) set the low pressure warning 
level alarm to “return to normal” 

 
There was potential confusion in the first requirement 

(d) between the identity of an alarm (a system design 
issue) and the associated warning message (a user 
interface issue). Again, inspecting the document with this 
finding in mind confirmed that the three different 
designations above were indeed referring to the same 
entity. The same problem also occurred in three other 
requirements, and correcting it reduced the total number of 
alarms from six to two. Tabulation of alarms, as for other 
I/O items, may have avoided such confusion. 

 

Once we resolved issues in the VALSPACE model, the 
DEFVAL model became amenable to further analysis. So, 
we tested the model for the property: 

 

∀ d ∈ DataItems, defval(d) ≠ UNDEF 
 

which states that each data item should have a declared 
default value. Four items did not satisfy this property: the 
two alarms discussed above, the reported Cabin Pressure 
value, and the Confirmation Command Rejection Indicator 
(a flag of the command bus protocol). We already knew 
that the default state for all alarms was “return to normal” 
(i.e. no alarm), but the other two data items could 
potentially provide false information if read before the first 
assignment. 

A better understanding of these potentially dangerous 
conditions was gained by looking at the ECATAB model. 
This model, inspired by the Event tables of SCR 
[Heitmeyer et al. 1998], shows which actions (A) the 
system performs when a certain event (E) occurs, and 
which conditions (C) must hold for the actions to be 
performed. Since the Cabin Pressure Monitoring function 
was not described in terms of states, we assumed the 
system to always be in a “Normal” state. The ECATAB 
model synthesized by our tool from the NL text of the 
requirements is shown in Table 2, where we substitute 
abbreviations for the very long data and command names 
used in the SRS document.  Table 2 uses an SCR-like 
notation: for each requirement r, and for each triple in 
ecatab(r), conjuncts in the events predicate are marked 
with “@T” (read: “becomes true”), conjuncts in the 
conditions predicate are marked with “T” (read: “is true”) 
or “F” (read: “is false”) if they are negated, and elements 
of the actions set are explicitly listed under the Actions 
heading. 

 

 



 

Table 2: ECATAB model. 

This table passes the usual consistency checks; e.g., 
disjointness and coverage, under the customary one-input 
assumption3 [Heitmeyer et al. 1996] — i.e., assuming that 
exactly one variable changes value between the execution 
of two sets of actions . Given a set of actions A, we define 
its write-set, W(A), as the set of data items modified by the 
actions in the set, i.e.  

W(A) = {v | v:=value ∈ A} ∪ {v | Acquire v ∈ A}. 
 

Using Table 2, we identified the conditions under 
which the two variables above, Cabin Pressure (P) and 
Confirmation Command Rejection Indicator (CCREJ), are 
not initialized (by simply inspecting the rows ri that satisfy 
P ∈ W(actions(ri)) and CCREJ ∈ W(actions(ri)), 
respectively). P only occurs in the row for requirement a, 
so P is not initialized until the first sampling cycle occurs. 
Depending on the actual subsequent implementation, a 
first sample could be taken immediately upon startup — 
before even listening to the bus, or it could be delayed for 
as much as a second — during which time other 
components of the system reading the pressure value could 
obtain erroneous (random) results. CCREJ on the other 
hand is modified only by actions in rows h and i2, so it is 
not initialized until the first Disable FDIR or the Disable 
FDIR Confirmation Command (issued while CCREQ is 
DISABLED, which is its default value) comes up the bus. 
Since CCREJ is part of the bus protocol, we have to 

                                                           
3 This assumption holds for events triggered by the reception of 

commands, due to the serial nature of the 1553 bus used to carry them. 
We do not know if the one-input assumption actually holds between bus 
events (command reception) and timer events (sampling cycle, testing 
read pressure values). In a complete study, the assumption should be 
verified by inspection of the actual code or detailed design document for 
our subsystem. The VALSPACE model shows that FDIR and CCREQ 
can be either ENABLED or DISABLED only, so that checking for either 
value is sufficient. The system exhibits a certain hysteresis, simply 
maintaining the previous state for boundary cases where Pressure exactly 
equals the Upper or Lower Limit. 

assume that this behavior is documented and does not 
(currently) constitute a problem. 

 

If the one-input assumption cannot be guaranteed, we 
can still identify potentially dangerous conditions by 
examining incompatible requirements. Two action sets A 
and B are incompatible if they assign different values to 
the same variable, i.e. ∃ v ∈ W(A) ∩ W(B) s.t. (v:=a ∈ A  
∧  v:=b ∈ B  ∧  a≠b) ∨ (Acquire v ∈ A∪B)  
(for our purposes, “Acquire v” assigns to v an unknown 
value, potentially incompatible with any other value). In 
order to avoid conflicting assignments to the same data 
item, the conjunction of the events and conditions of rows 
with incompatible action sets must always be false, i.e. 

 
∀ r1, r2 ∈ Requirements, ∀ <evt1, cond1, act1>  ∈ ecatab(r1),  

∀ <evt2, cond2, act2>  ∈ ecatab(r2), 
  incompatible(act1,act2)  ⇒  ¬(cond1 ∧ cond2 ∧ evt1 ∧ evt2) 
 
In Table 2, the following rows are incompatible: (d,e), 

(d,j), (f,g), (f,j), (h,i1), (h,i2), (h,j), (i1,j), but only the first 
and third pair satisfy the above property. In fact, they can 
be discounted by simple arithmetic (for example, (d,e) 
represents the case when the Pressure becomes at the same 
time higher and lower than the admissible Lower Limit). 
The second and fourth cases are worth flagging as 
potentially problematic. They represent the case when 
enabling the FDIR feature continuously (i.e. enabling the 
reporting of alarms) can actually prevent the alarms from 
firing, depending on the order in which events are checked 
by the code. This problem can be avoided by checking that 
FDIR = Enabled is FALSE as a condition for performing 
the actions in requirement j. The remaining cases 
formalize bus protocol violations, and can be ignored for a 
serial bus. 

 
Req 

Sample 
Cycle 
(1Hz) 

FDIR 
= 

Enabled 

P<LL 
x3 s.c. 

P>LL 
x3 s.c. 

P>UL 
x3 s.c. 

P<UL 
x3 s.c. 

 
D.FDIR 

D.FDIR 
CC 

CCREQ 
= 

Enabled 

 
E.FDIR 

 
Actions 

a @T          Acquire P 

d  T @T        LLWS:=TRUE 
LLW:=IN_AL 

e    @T       LLWS:=FALSE 
LLW:=RTN 

f  T   @T      ULWS:=TRUE 
ULW:=IN_AL 

g      @T     ULWS:=FALSE 
ULW:=RTN 

h       @T    CCREQ:=ENABLED 
CCREJ:=FALSE 

1        @T T  FDIR:=DISABLED 
CCREQ:=DISABLED 

i 

2        @T F  Reject D.FDIR CC 
CCREJ:=TRUE 

j          @T CCREQ:=DISABLED 
FDIR:=ENABLED 
LLWS:=FALSE 
ULWS:=FALSE 
LLW:=RTN 
ULW:=RTN 



 

5. Lessons learned 

The original aim of this study was not the validation of 
the requirements specification described, but to 
experiment with the use of lightweight formal methods in 
an RE process based on NL requirements and inspections. 
The total effort spent on initial setup, done once only by 
one of the authors – familiar with the parsing and 
modeling environment but completely ignorant of the 
problem domain4, was less than three working days. 
Subsequently, parsing the sample specification took less 
than 10 seconds, while generating and validating the 
various models took between 0.5 and 2 seconds on a 
desktop PC. No training was required for the requirements 
writers (we used the original document verbatim), and 
little explanation of how to interpret the results of the 
process is needed by a V&V team. 

 
Such low computational and human costs strongly 

suggest that our techniques could be used successfully 
during requirements writing and evolution5. We believe 
that the application of these techniques could also help in 
tracking the quality of a specification between full releases 
and inspections, thus providing finer grain monitoring of 
the RE process and to some extent validating changes that 
are requested and implemented. 

 
While the inconsistencies we identified in our analysis 

currently appear to be non-critical, unfortunate 
experiences (such as the Ariane 5 disaster [Nuseibeh 
1997]) have shown us that risk assessments can change as 
requirements and other circumstances change. The 
availability of lightweight formal methods to identify and 
track inconsistencies in natural language requirements 
documents is therefore invaluable.  

 
It is particularly interesting to note that a number of the 

problems we discovered via lightweight validation (e.g., 
the need for alarms tabulation, the issue/set terminological 
problem, the need for unequivocal alarm designations and 
the separation between design and user interface issues) 
were also independently discovered and corrected by 
NASA’s IV&V team. In fact, the revision of the NCS 
specification immediately following the three revisions we 
used in our case study, was changed in line with our 
findings. The latest revision also included some 
evolutionary changes that were not prompted by errors in 

                                                           
4 This can be an advantage in trying to identify “obvious” errors 

[Berry 1995]. 
5 For very large documents, differential parsing and model updating 

can be used instead of re-parsing the entire document each time. In this 
case, parsing time drops to 1-2 seconds on average, and is influenced 
only by the amount of changes in the document between validation 
iterations, and not by the document size. In our experience, the amount of 
changes between revisions tends to remain constant, and so is parsing 
time. 

the previous releases, but still presented the errors related 
to uninitialized and to inconsistently named data items that 
we discussed above. In light of the partiality of the 
validation performed by our lightweight methods, we 
regard the fact that no error was discovered by the IV&V 
team that had gone undetected by our study as merely a 
casual — albeit comforting — occurrence. 

 

6. Related Work 

The idea that requirements can be analyzed in an 
automatic fashion in order to identify and possibly correct 
several kind of errors has attracted much attention. Most 
proposals call for a formal specification of the 
requirements to begin with. [Heitmeyer et al. 1998] 
present a method based on the Four-Variables Model by 
Parnas and Madey, discuss the design of a prototype tool, 
and give conditions under which the consistency checks 
can be complete. However, in their proposal requirements 
must be expressed in the formal SCR notation (based on 
finite state machines and event/conditions tables). 
Similarly, [Jackson & Damon 1996] in their validation 
tool Nitpick assume that requirements are expressed in a 
subset of Z, and [Reubenstein & Waters 1991] call for 
“natural language-like” requirements written in LISP. 
Validation via model checkers like Nitpick or SPIN 
[Holzmann 1995] can provide a high degree of confidence, 
but the formalization step in itself is prone to errors, so 
some connection to informal requirements is often sought.  

 
[Duffy et al. 1995] try to integrate formal and informal 

representations of the requirements by mandating that both 
must be stated side-by-side; analysis is then performed on 
the formal version. However, equivalence between the two 
representations of the same requirement is only assumed, 
and no guarantee is given of their actual correspondence. 
So, effectively, their proposal amounts to annotating a 
formal requirements document with abundant natural 
language comments. Others (e.g., [Dalianis 1992]) propose 
to generate a natural language paraphrase of a formal 
requirements document to help interaction with the 
customer and other non-technical participants in the 
software development process. This approach is the exact 
dual of the one we presented in the present paper, based on 
parsing of natural language requirements. Both techniques 
can be used in the same project, and actually complement 
each other well. Other work related to the techniques we 
used in the case study include [Rolland 1992] – where 
parsing techniques are used to extract a conceptual model 
from natural language requirements, and [Macias & 
Pulman 1993] – in which a strict syntax is imposed on the 
requirements to ensure syntactic quality. 



 

7. Conclusions and Future Work 

In this paper we have presented a structured approach 
for validating natural language requirements. We applied 
our approach to an industrial case study, which served to 
demonstrate the feasibility and benefits of lightweight 
formal methods in this context. The low cost of our 
approach, both in terms of human training and of 
computational resources needed, makes it particularly well 
suited for the initial introduction of formal methods in an 
organization. 

 
Although we examined a single requirements 

document, the techniques we developed for the case study 
can be reused to validate subsequent releases of the same 
document, and indeed can be applied to other projects 
making use of a similar document style. So, for example, 
the effort spent defining parsing rules need not be 
duplicated in subsequent projects by the same 
organization.  

 
If necessary, more complex models could be 

constructed. For example, our ECATAB model could be 
extended to a full SCR model. Frequent lightweight 
validation could be performed on the simpler models (like 
ECATAB), while less frequent, more complete analysis 
could be performed on the more costly models. 

 
We expect that embedding lightweight formal methods 

into a requirements engineer’s everyday development 
environment would provide substantial productivity 
benefits. For example, a requirements management tool 
could be adapted to provide a validation function as part of 
its analysis capabilities. We are in the early stages of 
cooperating with a commercial firm for this purpose. 
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