

Lightweight Validation of Natural Language Requirements:
a case study

Vincenzo Gervasi Bashar Nuseibeh

Dipartimento di Informatica
Università di Pisa
I-56125 Pisa, Italy

Email: gervasi@di.unipi.it

Department of Computing
Imperial College

London SW7 2BZ, UK
Email: ban@doc.ic.ac.uk

Abstract
In this paper, we report on our experiences of using
lightweight formal methods for the partial validation of
natural language (NL) requirements documents. We
describe a case study based on part of NASA’s
specification of the Node Control Software of the
International Space Station, and apply to it our method of
checking properties on models obtained by shallow
parsing of natural language requirements. These
experiences support our position that it is feasible and
useful to perform automated analysis of requirements
expressed in natural language. Indeed we identified a
number of errors in our case study that were also
independently discovered and corrected by NASA’s IV&V
Facility in a subsequent version of the same document.
The paper describes the techniques we used, the errors we
found, and reflects on the lessons learned.

Keywords: Natural language requirements, lightweight
formal methods, requirements validation.

1. Introduction: lightweight formal methods
and requirements validation

The use of lightweight formal methods has recently
received increasing attention in the software development
literature [Feather 1998; Jackson & Wing 1996]. In the
context of requirements engineering (RE), we use the term
“lightweight formal methods” to characterise those
methods whose adoption cost is a small fraction of that of
the overall RE process, including training, application and
computational costs. Lightweight formal methods often
perform partial analysis on partial specifications only
[Easterbrook et al. 1998]. They do not require a
commitment to translate an entire (informal) requirements
document into a formal one, nor to maintain formal and
informal versions of specifications in parallel [Kemmerer
1990]. Moreover, as requirements specifications evolve
during the early stages of the RE process, lightweight
formal methods provide an opportunity for gradually

validating requirements, paving the way for later
introduction of more exhaustive and rigorous analysis if
needed.

A number of experiences have been reported on the use

of lightweight formal methods. These range from their
application to the very early stages of a development
process (e.g., [Goldin & Berry 1997] who use lexical
analysis to find abstractions in unstructured and
uninterpreted text), to design support systems [Hesketh et
al. 1998], and to reengineering applications on existing
code [Murphy et al. 1995]. Others have studied the
application of NL understanding techniques to the
automatic extraction of models from NL requirements
[Rolland 1992; Macias & Pulman 1993]. The application
of lightweight methods to the analysis and validation of
NL requirements is particularly appealing, since industrial
practice shows that NL requirements are easier to evolve,
maintain and discuss with (possibly non-technical)
customers. However, it is often very difficult to prove
properties such as correctness, consistency and minimality
about NL requirements. This paper describes a real case
study demonstrating the practical application of
lightweight methods to analyse such requirements.

The paper is structured as follows. We begin by

providing some background to our case study, followed by
a short presentation of our general framework for
lightweight validation of natural language requirements.
Then we describe the application of our framework to the
case study, discuss our findings, and reflect on the lessons
we learned. A short survey of related work and a
discussion of future work conclude the paper.

2. The case study

We studied a fragment of a NASA Software
Requirements Specification (SRS) for the Node Control
Software (NCS) on the International Space Station [NASA
1997]. The choice of this particular document was
appealing because we assumed it to be of high quality
(being the 12th release of those requirements, and subject

to many inspections and revisions), and because parts of it
had already been analyzed using different techniques, in
related studies [Easterbrook et al. 1998; Russo et al. 1998;
Russo et al. 1999].

The document, 250 pages long, is written mainly in

narrative English, with several tables and the occasional
schematic diagram interspersed in the text. The 3-page
fragment we chose to analyze described one of the basic
components of the Environmental Control function —
Cabin Pressure Monitoring. The NCS continuously
monitors the cabin pressure, and issues alarms if the
measured pressure exceeds operating limits. This function
can be disabled and enabled as part of Fault Detection,
Isolation and Recovery (FDIR) procedures.

The document is structured by NCS functions (e.g.,

Telemetry Control, Environmental Control, Time
Management, etc.). Each function is described in terms of
individual constituent components (e.g., Environmental
Control includes pressure monitoring, air fan control, fire
& smoke detection, etc.). Each of these components, in
turn, is first introduced in general, narrative terms, and
then detailed by describing its inputs, outputs and expected
behaviour.

3. Approach: validating natural language
requirements

Our approach to automatic partial validation of NL
requirements is structured in a setup phase and a
production phase. The setup phase includes the following
activities:

1. Defining a style, a structure and a language for the

requirements document. This step can be meant either
normatively, i.e. as the production of a prescriptive
style manual for the requirements document (and in
this case a syntax-guided editor can be used to support
requirements writing), or descriptively, i.e. as an
adaptation of the capabilities of a parsing tool to an
already existing document written in a defined style
(as in the case of the experience we report here).

2. Selecting desirable properties to check. Which
properties of a certain document or system described
in a document are “interesting” depends on the
particular context of the analysis. As is common with
lightweight formal methods, partial validation is
usually acceptable at this stage.

3. Defining one or more models on which the properties
selected in the previous step can be checked.
Properties are always relative to models, i.e.
abstractions of the document or of the system
described in it, which collect in an analyzable
structure the information needed to check the

property. For example, a connection property among
system components can be checked on a model
describing all the communications among system
components.

Once the setup phase has been completed, the

production phase can be iterated at any stage of
development of the requirements — without incurring any
significant additional cost, as we will show later. The
production phase of our approach includes:

4. Pre-processing the requirements document, to handle

format, structure and typographical details and to
translate the requirements document to a canonical
form amenable to later processing.

5. Parsing the NL text of the requirements, leading to an
analyzable representation of the semantic content of
the text. Again, parsing can be (and usually is) partial,
to help in reducing the cost of the validation, as long
as that does not interfere with the collection of the
information needed to perform the validation.

6. Building the models defined in step 3 above, using the
information collected during the parsing process. It is
possible to build models of the requirements
document (for example, distribution of topics among
sections of the document) and of the system described
by the requirements (for example, a model of the
communication paths in a distributed system).

7. Checking that the models satisfy chosen properties.
As in the previous step, it is possible to check
properties of the document (in our previous example,
consistency of topics inside a single section) and of
the system (for example, the existence of disjoint
components in the communication paths model).

8. Evaluating findings and revising the requirements
specification accordingly. It is particularly important
that the validation checks provide as much detail as
possible about the point and the reason of a failure
(i.e., on the circumstances in which a validation
property was violated). Similarly to the
counterexamples provided by some full formal
methods, this information helps the requirements
engineer to identify and fix errors that cause
violations.

This process offers a number of advantages in an

industrial setting. Steps 1-3 are reusable across projects, as
each organization tends to adopt defined internal standards
for document style (step 1) and quality control (steps 2 and
3). Moving these standards into a tool is an effective way
to accumulate the organizational knowledge and expertise
in a safe and structured way, and to have it applied in a
deterministic and reproducible manner during the
production phase. Also, steps 4-7 are entirely automatic,
leaving step 8 only for the requirements engineer to
consider at each iteration.

4. Experience: application of approach to the
case study

In this section we describe the details of our experience
with the case study, according to the structure of the
process outlined above. Since — due to logistic
considerations — we had to work alongside NASA’s
standard verification and validation process, and not inside
it, we only ran a single iteration of our production phase.
Also, we analyzed three major revisions of the
requirements document in “batch mode”. This is not the
best possible setting for lightweight validation, which is
actually better suited for continuous application during
requirements evolution between minor revisions.
However, this unfavorable setting offered the opportunity
to compare our findings with those of a traditional V&V
process as performed by NASA (mostly inspection); the
results of this comparison will be described in the next
section.

4.1. Instantiating the approach

1. Defining a style, structure and language. The NCS
specification exhibited a consistent style and structure
(conforming to DOD-STD-2167A), and was of
overall good structural quality [Fabbrini et al. 1998].
The language used in the detailed descriptions of each
function was concerned mainly with (fairly complex)
temporal ordering of input and output events, but also
included user interface and other technical issues1 that
influenced the kind of language used. On the other
hand, the narrative text was much more elaborate
from a linguistic point of view, but since it was
intended merely as an explanation of the technical text
in the engineering part (that served as the definitive
reference), it added no information on its own, and
thus was not relevant to our analysis.

We adopted a shallow parsing approach for

extracting information from the NL text. Shallow
parsing is a lightweight text analysis method that
performs a (potentially) partial analysis of the
linguistic structures in a text. We used the Cico
domain-based parser [Ambriola & Gervasi 1997], a
tool based on fuzzy matching of sentence fragments to
templates, with a rule set specifically developed for
the language used in the NCS specification. Building
this rule set required no more than two days of work

1 As an extreme example, some of the functions described had to

behave differently depending on the orbital position of the space station,
as expressed by an orbit diagram included in the text. It is typical of
lightweight formal methods (and thus of partial validation) that none of
the models really need to “understand” the details behind such a diagram,
and in our case study we could simply treat a change in orbital position as
an unexplained event.

by one of the authors. Given the highly specialized
language used in the document, 30 rules (in addition
to the generic rules already provided by the tool) were
sufficient to obtain complete parsing of three different
revisions of the document.

2. Selecting desirable properties to check. Given that

most of the requirements dealt with assigning certain
values to specific output lines upon the occurrence of
some event, we decided to perform “black-box”
validation of the requirements. In particular, we were
interested in the possible values that each output line
could assume. Some of the properties we selected at
this stage (those that uncovered problems in the
specification) are presented later. Formally, input and
output lines were described in terms of associated data
items, whose value could change outside system
control (for input lines) and whose assignment caused
side effects (for output lines).

3. Defining models for checking selected properties. All

the properties we defined could be checked on the
four models described below:
• the kind of data item (KIND) model, distinguishing

constant values from internal variables and I/O
items. Formally, ∀ d ∈ DataItems, kind(d) is either
CONST (a constant value), FLAG (an internal
variable) or IO (an input/output line).

• the default values (DEFVAL) model, showing only
the default or initialization value of data items, as
declared in the requirements. Formally, ∀ d ∈
DataItems, defval(d) is either UNDEF (no
initialization value was specified by the
requirements) or a set of specific literal values.2

• the value space (VALSPACE) model, collecting all
the assignments described in the requirements to
determine the space of all the possible values for a
data item. Formally, ∀ d ∈ DataItems, valspace(d)
is the set of all values whose assignment to d or
whose comparison with the value of d is mentioned
in the requirements.

• the event-condition-action table (ECATAB) model,
collecting all the possible actions of the system,
together with the conditions and events that cause
their execution. Formally, ∀ r ∈ Requirements,
ecatab(r) = { < events, conditions, actions > }
where events and conditions are predicates on the

2 No initializations with non-literal values were specified in our

requirements, but if present, they could have been treated as an
assignment to be performed unconditionally upon a “Boot” event in the
ECATAB model. Notice also that although defval(d) is specified as a set,
a double initialization with different values would have been regarded as
an error in the requirements (∀ d ∈ DataItems, #defval(d)=1 was one of
the desirable properties). In our case study, this property was never
violated, and defval(d) always resulted in a singleton.

value of members of DataItems, while actions is a
set of actions (either assignments to members of
DataItems or the special actions “Acquire d”,
signifying the assignment to d of a value read from
an input device, and “Reject d”, indicating the
rejection of a command according to the bus
protocol, with d∈DataItems), as specified by
requirement r.

We used the Circe environment [Ambriola & Gervasi
1997] to provide tool support for the production phase.
Circe is a Web-based environment for the automated
analysis of requirements written in natural language. The
environment supports the extraction of models from the
requirements, their validation, and the collection of metric
data about the requirements document, the system
described in it and about the requirements writing process
itself.

4. Pre-processing the requirements document. The text
of the requirements was simply copied and pasted
from the original Word document into our tool, and
needed very little manual preprocessing (e.g.,
commenting out section titles and changing
enumerated lists to bulleted lists). Such preprocessing
could have been performed automatically if the
document size had required it.

5. Parsing of the NL text. The parsing technique we
adopted required that a glossary be defined containing
domain-specific terms. This task was accomplished by
populating the glossary with:
• the names of the various data items from the

input/output tables included in the specification
document,

• the name of the system itself (“NCS”), and
• a few other names that were used in the

requirements (even though they were not declared
as input or output data or command names).

The parsing process in itself provided a language
validation of the requirements. No spelling or
syntactic errors were found, supporting our
assumption that the requirements were of good
syntactic quality [Krogstie et al. 1995] with respect to
the language defined by our parsing rules. Obviously,

only a partial assessment of the semantic quality
defined in the same work was performed, by formally
validating the models as described below.

6. Building models. The task of building the four models
defined in step 3 was carried out by a small number of
modelers, i.e. plug-ins of Circe’s modular
architecture. The logic needed to build these models,
implemented as additional modules of the existing
tool, was less than 100 lines of AWK [Aho et al.
1988] code.

7. Checking that the models satisfy chosen properties.
The properties we selected were analyzed by a
number of specialized validators (also implemented
as plug-ins for Circe), each only a few lines of code
long. Many of the chosen properties, mostly
concerning “obvious” completeness and consistency
criteria, were never violated, and are not reported
here. Violations that led to the identification of real
problems in the specification are discussed in some
detail in the following.

4.2. Findings of the validation

As mentioned above, the VALSPACE model collected
all the values mentioned in the requirements as assignable
to each data item, either as default values or by explicit
statements. One of the properties we wanted to verify on
this collection was simply that every non-constant data
item had more than a single possible value, or

∀ d ∈ DataItems, kind(d) ≠ CONST ⇒ #valspace(d) ≥ 2

We found six different data items (listed in Table 1)
that did not satisfy this simple property. Closer inspection
triggered by this finding revealed that several data items
whose labels started with “ACS N1-2” were synonyms to
other data items whose names started with “ACS N1S2” —
with the N1-2 label (probably) left over from previous
releases. We had originally interpreted these as distinct
data items, as the SRS document contained many other
distinct data items with only slight variations in their
names.

Table 1: Data items failing VALSPACE validation.

Data item name (d) valspace(d) Reason
“ACS N1-2 Cabin Pressure Lower Limit
Warning State”

{TRUE} Synonym with “ACS N1S2 Cabin Pressure
Lower Limit Warning State”.

“ACS N1S2 Cabin Pressure Upper Limit
Warning State”

{FALSE} Synonym with “ACS N1-2 Cabin Pressure
Lower Limit Warning State”.

“High pressure warning level alarm” {“return to normal”} Alarms issued, not set; also synonym with
the “Upper limit” alarm.

“Low pressure warning level alarm” {“return to normal”} Alarms issued, not set; also synonym with
the “Lower limit” alarm.

“Upper limit warning level alarm” {“return to normal”} Alarms issued, not set; also synonym with
the “High pressure” alarm.

“Lower limit warning level alarm” {“return to normal”} Alarms issued, not set; also synonym with
the “Low pressure” alarm.

We also had to revise our understanding of the alarm
handling by the system. The document used the wording
issue an alarm to indicate entrance into an alarm state, and
set alarm to “return to normal” to indicate exiting from an
alarm state. We had originally taken these as unrelated
operations. Inspection of the relevant section of the SRS
document confirmed that issuing an alarm should be
interpreted as setting an alarm to “in alarm” — a change
in interpretation that was reflected by a simple update of
the parsing rule for issue in our rule set.

Another issue related to alarms was that the SRS
referred to the same alarm in different ways. For example
(letters refers to requirements in the SRS):

 d. (The NCS shall) issue a warning level alarm

(message: “Node 1 Cabin Pressure Lower
Limit Warning Violation”)

 e. (The NCS shall) set the lower limit warning
level alarm to “return to normal”

 j. (The NCS shall) set the low pressure warning
level alarm to “return to normal”

There was potential confusion in the first requirement

(d) between the identity of an alarm (a system design
issue) and the associated warning message (a user
interface issue). Again, inspecting the document with this
finding in mind confirmed that the three different
designations above were indeed referring to the same
entity. The same problem also occurred in three other
requirements, and correcting it reduced the total number of
alarms from six to two. Tabulation of alarms, as for other
I/O items, may have avoided such confusion.

Once we resolved issues in the VALSPACE model, the
DEFVAL model became amenable to further analysis. So,
we tested the model for the property:

∀ d ∈ DataItems, defval(d) ≠ UNDEF

which states that each data item should have a declared
default value. Four items did not satisfy this property: the
two alarms discussed above, the reported Cabin Pressure
value, and the Confirmation Command Rejection Indicator
(a flag of the command bus protocol). We already knew
that the default state for all alarms was “return to normal”
(i.e. no alarm), but the other two data items could
potentially provide false information if read before the first
assignment.

A better understanding of these potentially dangerous
conditions was gained by looking at the ECATAB model.
This model, inspired by the Event tables of SCR
[Heitmeyer et al. 1998], shows which actions (A) the
system performs when a certain event (E) occurs, and
which conditions (C) must hold for the actions to be
performed. Since the Cabin Pressure Monitoring function
was not described in terms of states, we assumed the
system to always be in a “Normal” state. The ECATAB
model synthesized by our tool from the NL text of the
requirements is shown in Table 2, where we substitute
abbreviations for the very long data and command names
used in the SRS document. Table 2 uses an SCR-like
notation: for each requirement r, and for each triple in
ecatab(r), conjuncts in the events predicate are marked
with “@T” (read: “becomes true”), conjuncts in the
conditions predicate are marked with “T” (read: “is true”)
or “F” (read: “is false”) if they are negated, and elements
of the actions set are explicitly listed under the Actions
heading.

Table 2: ECATAB model.

This table passes the usual consistency checks; e.g.,
disjointness and coverage, under the customary one-input
assumption3 [Heitmeyer et al. 1996] — i.e., assuming that
exactly one variable changes value between the execution
of two sets of actions . Given a set of actions A, we define
its write-set, W(A), as the set of data items modified by the
actions in the set, i.e.

W(A) = {v | v:=value ∈ A} ∪ {v | Acquire v ∈ A}.

Using Table 2, we identified the conditions under
which the two variables above, Cabin Pressure (P) and
Confirmation Command Rejection Indicator (CCREJ), are
not initialized (by simply inspecting the rows ri that satisfy
P ∈ W(actions(ri)) and CCREJ ∈ W(actions(ri)),
respectively). P only occurs in the row for requirement a,
so P is not initialized until the first sampling cycle occurs.
Depending on the actual subsequent implementation, a
first sample could be taken immediately upon startup —
before even listening to the bus, or it could be delayed for
as much as a second — during which time other
components of the system reading the pressure value could
obtain erroneous (random) results. CCREJ on the other
hand is modified only by actions in rows h and i2, so it is
not initialized until the first Disable FDIR or the Disable
FDIR Confirmation Command (issued while CCREQ is
DISABLED, which is its default value) comes up the bus.
Since CCREJ is part of the bus protocol, we have to

3 This assumption holds for events triggered by the reception of

commands, due to the serial nature of the 1553 bus used to carry them.
We do not know if the one-input assumption actually holds between bus
events (command reception) and timer events (sampling cycle, testing
read pressure values). In a complete study, the assumption should be
verified by inspection of the actual code or detailed design document for
our subsystem. The VALSPACE model shows that FDIR and CCREQ
can be either ENABLED or DISABLED only, so that checking for either
value is sufficient. The system exhibits a certain hysteresis, simply
maintaining the previous state for boundary cases where Pressure exactly
equals the Upper or Lower Limit.

assume that this behavior is documented and does not
(currently) constitute a problem.

If the one-input assumption cannot be guaranteed, we
can still identify potentially dangerous conditions by
examining incompatible requirements. Two action sets A
and B are incompatible if they assign different values to
the same variable, i.e. ∃ v ∈ W(A) ∩ W(B) s.t. (v:=a ∈ A
∧ v:=b ∈ B ∧ a≠b) ∨ (Acquire v ∈ A∪B)
(for our purposes, “Acquire v” assigns to v an unknown
value, potentially incompatible with any other value). In
order to avoid conflicting assignments to the same data
item, the conjunction of the events and conditions of rows
with incompatible action sets must always be false, i.e.

∀ r1, r2 ∈ Requirements, ∀ <evt1, cond1, act1> ∈ ecatab(r1),

∀ <evt2, cond2, act2> ∈ ecatab(r2),
 incompatible(act1,act2) ⇒ ¬(cond1 ∧ cond2 ∧ evt1 ∧ evt2)

In Table 2, the following rows are incompatible: (d,e),

(d,j), (f,g), (f,j), (h,i1), (h,i2), (h,j), (i1,j), but only the first
and third pair satisfy the above property. In fact, they can
be discounted by simple arithmetic (for example, (d,e)
represents the case when the Pressure becomes at the same
time higher and lower than the admissible Lower Limit).
The second and fourth cases are worth flagging as
potentially problematic. They represent the case when
enabling the FDIR feature continuously (i.e. enabling the
reporting of alarms) can actually prevent the alarms from
firing, depending on the order in which events are checked
by the code. This problem can be avoided by checking that
FDIR = Enabled is FALSE as a condition for performing
the actions in requirement j. The remaining cases
formalize bus protocol violations, and can be ignored for a
serial bus.

Req

Sample
Cycle
(1Hz)

FDIR
=

Enabled

P<LL
x3 s.c.

P>LL
x3 s.c.

P>UL
x3 s.c.

P<UL
x3 s.c.

D.FDIR

D.FDIR
CC

CCREQ
=

Enabled

E.FDIR

Actions

a @T Acquire P

d T @T LLWS:=TRUE
LLW:=IN_AL

e @T LLWS:=FALSE
LLW:=RTN

f T @T ULWS:=TRUE
ULW:=IN_AL

g @T ULWS:=FALSE
ULW:=RTN

h @T CCREQ:=ENABLED
CCREJ:=FALSE

1 @T T FDIR:=DISABLED
CCREQ:=DISABLED

i

2 @T F Reject D.FDIR CC
CCREJ:=TRUE

j @T CCREQ:=DISABLED
FDIR:=ENABLED
LLWS:=FALSE
ULWS:=FALSE
LLW:=RTN
ULW:=RTN

5. Lessons learned

The original aim of this study was not the validation of
the requirements specification described, but to
experiment with the use of lightweight formal methods in
an RE process based on NL requirements and inspections.
The total effort spent on initial setup, done once only by
one of the authors – familiar with the parsing and
modeling environment but completely ignorant of the
problem domain4, was less than three working days.
Subsequently, parsing the sample specification took less
than 10 seconds, while generating and validating the
various models took between 0.5 and 2 seconds on a
desktop PC. No training was required for the requirements
writers (we used the original document verbatim), and
little explanation of how to interpret the results of the
process is needed by a V&V team.

Such low computational and human costs strongly

suggest that our techniques could be used successfully
during requirements writing and evolution5. We believe
that the application of these techniques could also help in
tracking the quality of a specification between full releases
and inspections, thus providing finer grain monitoring of
the RE process and to some extent validating changes that
are requested and implemented.

While the inconsistencies we identified in our analysis

currently appear to be non-critical, unfortunate
experiences (such as the Ariane 5 disaster [Nuseibeh
1997]) have shown us that risk assessments can change as
requirements and other circumstances change. The
availability of lightweight formal methods to identify and
track inconsistencies in natural language requirements
documents is therefore invaluable.

It is particularly interesting to note that a number of the

problems we discovered via lightweight validation (e.g.,
the need for alarms tabulation, the issue/set terminological
problem, the need for unequivocal alarm designations and
the separation between design and user interface issues)
were also independently discovered and corrected by
NASA’s IV&V team. In fact, the revision of the NCS
specification immediately following the three revisions we
used in our case study, was changed in line with our
findings. The latest revision also included some
evolutionary changes that were not prompted by errors in

4 This can be an advantage in trying to identify “obvious” errors

[Berry 1995].
5 For very large documents, differential parsing and model updating

can be used instead of re-parsing the entire document each time. In this
case, parsing time drops to 1-2 seconds on average, and is influenced
only by the amount of changes in the document between validation
iterations, and not by the document size. In our experience, the amount of
changes between revisions tends to remain constant, and so is parsing
time.

the previous releases, but still presented the errors related
to uninitialized and to inconsistently named data items that
we discussed above. In light of the partiality of the
validation performed by our lightweight methods, we
regard the fact that no error was discovered by the IV&V
team that had gone undetected by our study as merely a
casual — albeit comforting — occurrence.

6. Related Work

The idea that requirements can be analyzed in an
automatic fashion in order to identify and possibly correct
several kind of errors has attracted much attention. Most
proposals call for a formal specification of the
requirements to begin with. [Heitmeyer et al. 1998]
present a method based on the Four-Variables Model by
Parnas and Madey, discuss the design of a prototype tool,
and give conditions under which the consistency checks
can be complete. However, in their proposal requirements
must be expressed in the formal SCR notation (based on
finite state machines and event/conditions tables).
Similarly, [Jackson & Damon 1996] in their validation
tool Nitpick assume that requirements are expressed in a
subset of Z, and [Reubenstein & Waters 1991] call for
“natural language-like” requirements written in LISP.
Validation via model checkers like Nitpick or SPIN
[Holzmann 1995] can provide a high degree of confidence,
but the formalization step in itself is prone to errors, so
some connection to informal requirements is often sought.

[Duffy et al. 1995] try to integrate formal and informal

representations of the requirements by mandating that both
must be stated side-by-side; analysis is then performed on
the formal version. However, equivalence between the two
representations of the same requirement is only assumed,
and no guarantee is given of their actual correspondence.
So, effectively, their proposal amounts to annotating a
formal requirements document with abundant natural
language comments. Others (e.g., [Dalianis 1992]) propose
to generate a natural language paraphrase of a formal
requirements document to help interaction with the
customer and other non-technical participants in the
software development process. This approach is the exact
dual of the one we presented in the present paper, based on
parsing of natural language requirements. Both techniques
can be used in the same project, and actually complement
each other well. Other work related to the techniques we
used in the case study include [Rolland 1992] – where
parsing techniques are used to extract a conceptual model
from natural language requirements, and [Macias &
Pulman 1993] – in which a strict syntax is imposed on the
requirements to ensure syntactic quality.

7. Conclusions and Future Work

In this paper we have presented a structured approach
for validating natural language requirements. We applied
our approach to an industrial case study, which served to
demonstrate the feasibility and benefits of lightweight
formal methods in this context. The low cost of our
approach, both in terms of human training and of
computational resources needed, makes it particularly well
suited for the initial introduction of formal methods in an
organization.

Although we examined a single requirements

document, the techniques we developed for the case study
can be reused to validate subsequent releases of the same
document, and indeed can be applied to other projects
making use of a similar document style. So, for example,
the effort spent defining parsing rules need not be
duplicated in subsequent projects by the same
organization.

If necessary, more complex models could be

constructed. For example, our ECATAB model could be
extended to a full SCR model. Frequent lightweight
validation could be performed on the simpler models (like
ECATAB), while less frequent, more complete analysis
could be performed on the more costly models.

We expect that embedding lightweight formal methods

into a requirements engineer’s everyday development
environment would provide substantial productivity
benefits. For example, a requirements management tool
could be adapted to provide a validation function as part of
its analysis capabilities. We are in the early stages of
cooperating with a commercial firm for this purpose.

Acknowledgement

We would like to thank Khalid Lateef and John Hinkle of the
NASA IV&V Facility, West Virginia, USA, for providing us
with the case study and for their valuable feedback and
discussions. Thanks also to Jack Callahan of NASA/WVU for
many useful insights into NASA V&V procedures. Bashar
Nuseibeh would like to acknowledge NASA’s financial support
under NASA Cooperative Agreement #NCC 2-979, and the UK
EPSRC for the MISE (GR/L 55964) and VOICI (GR/M 38582)
projects. Vincenzo Gervasi would like to acknowledge the
financial support of RENOIR.

References

[Aho et al. 1988] A. V. Aho, B. W. Kernighan and P. J.
Weinberger, The AWK Programming Language,
Addison-Wesley, Reading, Ma., 1988.

[Ambriola & Gervasi 1997] V. Ambriola and V. Gervasi,
“Processing Natural Language Requirements”,
Proceedings of the 12th IEEE Conference on
Automated Software Engineering, 36-45, November
1997.

[Berry 1995] D. M. Berry, “The Importance of Ignorance in
Requirements Engineering”, Journal of Systems and
Software, 28(2): 179-184, February 1995.

[Dalianis 1992] H. Dalianis, “A method for validating a
conceptual model by natural language discourse
generation”, (In) Advanced Information Systems
Engineering, Springer, LNCS 593, 1992.

[Duffy et al. 1995] D. Duffy, C. MacNish, J. McDermid and P.
Morris, “A framework for requirements analysis using
automated reasoning”, Lecture Notes in Computer
Science, 932, 1995.

[Easterbrook et al. 1998] S. Easterbrook, R. Lutz, R. Covington,
J. Kelly, Y. Ampo and D. Hamilton, “Experiences
Using Lightweight Formal Methods for Requirements
Modeling”, IEEE Transactions on Software
Engineering, 24(1): 4-14, January 1998.

[Fabbrini et al. 1998] F. Fabbrini, M. Fusani, V. Gervasi, S.
Gnesi and S. Ruggieri, “Achieving Quality in Natural
Language Requirements”, Proceedings of the 11th
International Software Quality Week, San Francisco,
May 1998.

[Feather 1998] M. S. Feather, “Rapid Application of Lightweight
Formal Methods for Consistency Analyses”, IEEE
Transactions on Software Engineering, 24(11): 949-
959, November 1998.

[Goldin & Berry 1997] L. Goldin and D. M. Berry, “Abstfinder:
A Prototype Natural Language Text Abstraction Finder
for Use in Requirement Elicitation”, Automated
Software Engineering Journal, 4(4): 375-412, October
1997.

Hietmeyer et al. 1996] C. Heitmeyer, R. D. Jeffords and B. G.
Labaw, “Automated Consistency Checking of
Requirements Specifications”, ACM Transactions on
Software Engineering and Methodology, 5(3):231-261,
July 1996.

[Heitmeyer et al. 1998] C. Heitmeyer, J. Kirby, B. G. Labaw and
R. Bharadwaj, “SCR*: A Toolset for Specifying and
Analyzing Software Requirements”, Proceedings of
10th Annual Conference on Computer-Aided
Verification (CAV’98), Vancouver, Canada, 1998.

[Hesketh et al. 1998] J. Hesketh, D. Robertson, N. Fuchs and A.
Bundy, “Lightweight Formalisation in Support of
Requirements Engineering”, Automated Software
Engineering, 5(2):183-210, April 1998.

[Holzmann 1995] G. J. Holzmann, “Proving properties of
concurrent systems with SPIN”, Lecture Notes in
Computer Science, 962, 1995.

[Jackson & Damon 1996] D. Jackson and C. A. Damon,
“Elements of style: Analyzing a software design
feature with a counterexample detector”, IEEE
Transactions on Software Engineering, 22(7):484-495,
July 1996.

[Jackson & Wing 1996] D. Jackson and J. Wing, “Lightweight
Formal Methods”, IEEE Computer, 29(4): 21-22, April
1996.

[Kemmerer 1990] R. A. Kemmerer, “Integrating Formal
Methods into the Development Process” IEEE
Software, 7(5): 37-50, September 1990.

[Krogstie et al. 1995] J. Krogstie, O. I. Lindland and G. Sindre,
“Towards a deeper understanding of quality in
requirements engineering”, Proceedings of the 7th
International CAiSE Conference, 82-95, Springer,
LNCS 932, 1995.

[Murphy et al. 1995] G. C. Murphy and D. Notkin, “Lightweight
Source Model Extraction”, Proceedings of the 3rd ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, 116-127, October 1995.

[Macias & Pulman 1993] B. Macias and S. G. Pulman, “Natural
Language Processing for Requirements Specification”,
(In) Safety-critical Systems, 57-89, Chapman and Hall,
1993.

[NASA 1997] NASA/Boeing, “Software Requirements
Specification for the NCS MDM CSCI”, International
Space Station Document S684-10174, April 1997.

[Nuseibeh 1997] B. Nuseibeh, “Ariane 5: Who Dunnit?”,
IEEE Software, 14(3): 15-16, May 1997.

[Reubenstein & Waters 1991] H. B. Reubenstein and R. C.
Waters, “The requirements apprentice: Automated
assistance for requirements acquisition”. IEEE
Transactions on Software Engineering, 17(3):226-240,
March 1991.

[Rolland 1992] C. Rolland, “A Natural Language Approach for
Requirements Engineering”, (In) Advanced
Information Systems Engineering, Springer, LNCS
593, 1992.

[Russo et al. 1998] A. Russo, B. Nuseibeh and J. Kramer,
“Restructuring Requirements Specifications: a case
study”, Proceedings of 3rd IEEE International
Conference on Requirements Engineering (ICRE’98),
51-60, Colorado Springs, USA, April 1998.

[Russo et al. 1999] A. Russo, B. Nuseibeh and J. Kramer,
“Restructuring Requirements Specifications”, IEE
Proceedings: Software, 144(1):44-53, February 1999.

