Fundamenta Informaticae 77 (2007) 71-103 71
I0S Press

CoreASM: An Extensible ASM Execution Enginée

Roozbeh Farahbod

School of Computing Science, Simon Fraser University
Burnaby, B.C., Canada

rfarahbo@cs.sfu.ca

Vincenzo Gervasi

Dipartimento di Informatica, Universitdi Pisa,
Pisa, Italy

gervasi@di.unipi.it

Uwe Glasser

School of Computing Science, Simon Fraser University
Burnaby, B.C., Canada

glasser@cs.sfu.ca

Abstract. In this paper we introduce a new research effort in maldbgtract state machines
(ASMs) executable. The aim is to specify and implement arc@ti@n engine for a language that
is as close as possible to the mathematical definition of AGMds. The paper presents the general
architecture of the engine, together with a high-level dpson of the extensibility mechanisms
that are used by the engine to accommodate arbitrary baskdso scheduling policies, and new
rule forms.

Keywords: CoreASM, Abstract state machines, Specification langydgyescutable specification

1. Introduction

Abstract state machines [16], or ASMs, are well known for their versatiligomputational and mathe-
matical modeling of architectures, languages, protocols and virtually ak kihgequential, parallel and

*This paper is a revised and updated version of [26].
f Address for correspondence: School of Computing Science, Siramer University, Burnaby, B.C., Canada

72 R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine

distributed systems with an orientation towards practical applications. Theybar strength of this ap-
proach is the flexibility and universality it provides as a mathematical framef@sosemantic modeling
of functional requirements in terms of abstract machine models and their Buriisling on a rigorous
mathematical foundation [5, 37], ASM abstraction principles provide atte instrument for mod-
eling the construction of software designs prior to coding and for angjysiich designs by reasoning
about design choices and their implications. Typical deficiencies ofteriitdnformal requirements,
such as ambiguities, loose ends and inconsistencies, thereby becomé arglican more easily be
eliminated. To this end, abstraction and formalization help gaining a clearerstadding of the prob-
lem to be solved, thus reducing the risk of making premature decisions witlcéetsequences [41].

Viewing behavior of discrete dynamic systems as evolution of abstract,skateslly represented
as variants of Tarski structures, is invaluable for bridging the gap leetwdormal requirements and
precise specifications in the earlier phases of system design. Similarly,ntless @iso simplifies the
task of constructing models of requirements that are being extracted frolanmaptations in reverse
engineering applications. Both directions have been studied extensiv&lgM researchers and devel-
opers in academia and industry for more than 15 years, leading to a soliddulethical foundation
for building ASM ground modelf®]. Intuitively, an ASM ground model may be considered a semantic
‘blueprint’ of the key system requirements that need to be established éciz@rand reliable form with-
out compromising any conceivable refinements [10]. The role and naftgreund models, as discussed
in [9], leads itself to the conclusion that the concept of ground model istaldy present in every sys-
tem design, but often not in an explicit form. Thus, the origin and motivatoritfe development of
ASM specification, validation and verification techniques [8] has beendhiedto make ground mod-
els visible and inspectable by analytical means and empirical techniquésitiegpmachine assistance
where appropriate. Widely recognized applications include semantic &iond of industrial system
design languages like the ITU-T standard for SDL [33, 48, 25, 43]|E#&& language VHDL [13, 12]
and its successor SystemC [47], programming languages like JAVA [$1C2311] and Prolog [6, 7],
Web service description languages [29, 30, 28], communication archi#ef3d, 35], embedded control
systems [15, 4, 14], et ceteta.

The research we describe in this paper focuses on the design of &}eantable ASM language,
calledCoreASM, in combination with a supporting tool environment for high-level desigpeermental
validation and formal verification (where appropriate) of abstract maamiodels. Th&€oreASM envi-
ronment consists of a platform-independengjinefor executing th&CoreASM language and a graphical
user interface (GUI) for interactive visualization and controCaireASM simulation runs. The engine
comes with a sophisticated and well defined interface, called Control AREliki enabling future devel-
opment and integration of complementary tools, e.g., for symbolic model clie&ihand automated
test generation [32]. The design @breASM is novel and the underlying principles are unprecedented
among the existing executable ASM languages, including the most advamegdAsmL [46], the ASM
Workbench [18], XASM [1], and AsmGofer [49].

Exploring the problem space for the purpose of writingritial specificationcalls for a language
that emphasizes freedom of experimentation and supports the evolutiatarg of design being a cre-
ative activity. Such a language must allow writing highly abstract and cesgpiscifications by minimiz-
ing the need for encoding in mapping the problem space to a formal modeprifiegle of minimality,
in combination with robustness of the underlying mathematical framework, alkesneasy modifiabil-

1See also the ASM website aww.eecs.umich.edu/gasmawd the overview in [16].

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine 73

Problem

Ab}tﬁact Spftware Model

Design\S/ —— \%md e

Detailed ground model

t

nemen

Construction AsmL, XASM, ...

Refi

Coding Code

Implementation

Figure 1. Background and Motivation.

ity feasible, effectively supporting the highly iterative nature of spedificeand design. In our work we
address the needs of that part of the software development proe¢ss ¢losest to the problem space,
as illustrated in Figure 1.

The CoreASM language and supporting tool architecture focus on early phases sfftinare de-
sign process; consequently, primary concerns are towards the wiopicbldems. In particular, we
want to encourage rapid prototyping with ASMs, starting with mathematicallyv@ik abstract and un-
typed models and gradually refining them down to more concrete versionpewexrful technique for
specification with refinement that has been exploited in [16] and [10]. i$npitocess, we aim at main-
taining executability of even fairly abstract models. Another important ciewiatic that differentiates
our endeavor from previous experiences is the emphasis that we aregpta extensibility of the lan-
guage. Historical developments have shown how the original, basic defioiti®SMs from the Lipari
Guide [36] has been extended many times by adding new rule forms ¢kansé or syntactic sugar
(e.g.,casd. At the same time, many significant specifications need to introduce spacidiounds,
often with non-standard operations. We want to preserve in our laerghagreedom of experimenta-
tion that has proven so fruitful in the development of ASM concepts, tarithjs end, we have designed
our architecture around the conceptpidig-ins that allows to customize the language to specific needs.
The argumentative structure leading from our high-level goals to spéeiign choices is summarized
graphically in Figure 2.

An extensible, platform independent tool package (the language, iisegrand the GUI) will be
an asset both for industrial engineering of complex software systems kingrsoftware specifications
and designs more robust and reliable, and for researchers that valilbdo test in practice proposed
extensions to the basic ASM language.

This paper is structured as follows. Section 2 provides first a high-texezliew of the architecture
of theCoreASM engine, and then presents its components in some detail; a discussion detieaix
ity provisions in the architecture completes the section. Section 3 presetisteacaspecification of the
CoreASM language, and shows, through several examples, how the core ¢@ngua its extensions are

2\We callbackgrounda collection of related domains and relations packaged together as a sigigh lmit.

74 R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine

Support to early specification

Support for ""rapid prototyping"

Wide applicability Minimal \Lencodmg yal explerime%
/ \ Domain—specific language Untypjdness Abstract GUI and

execution interaction
Platform
1ndependence Exten51b1hty (Optional)
Run—time type Symbolic
checking execution for Control API
Java Implementatlon Plug—in archltecture undefined macros

Figure 2. CoreASM requirements and design choices.

specified. Section 4 provides an account of related work; this is folldweslr conclusions and plans
for future work, which conclude the paper.

2. Architecture Overview

TheCoreASM engine consists of four componentparser, aninterpreter, aschedulerand arabstract
storage(Figure 3). The interpreter, the scheduler, and the abstract sto@fidagether to simulate an
ASM run. The engine interacts with the environment through a single inesréadled thecontrol AP,
which provides various operations such as loadif@oae ASM specification, starting an ASM run, or
performing a single step.

Applications

Control API

Interpreter

Abstract
Storage

b Scheduler |-

CoreASM Engine

Figure 3. Overall Architecture atoreASM.

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine 75

The parser reads@oreASM specification and provides the interpreter with an annotated parse tree
for each program. The interpreter then evaluates the programs in thécggen by examining all the
rules and generating update sets. The abstract storage manages thwdieltdor the abstract state.
In particular, it stores the current state of the simulated machine along withideeyhof its previous
states, which can be used to examine the run traces or to rollback to a greté@de and resume the
computation. The number of possible rollbacks is configuréiile.evaluate a program, the interpreter
interacts with the abstract storage in order to obtain values from the tgted@ and generates updates
for the next state. The role of the scheduler is to orchestrate the whalat®xeprocess. In particular,
for distributed ASMs the scheduler is responsible for selecting the sefenits that will contribute to
the next computation step and coordinating the execution of those agemtsciAdéduler also manages
cases of inconsistency of update sets generated in a step.

The execution process of a single step in@weASM engine is as follows (refer also to Figures 6
to 9 in Section 2.2):

The Control API sends a STEP command to the scheduler.
The scheduler gets the whole set of agents from the abstract s{bragehe special seigents.

The scheduler selects a subset of these agents, which will perfonputation in the next step.

e

The scheduler selects a single agent from this set and assigns it fethal variableselfin the
abstract storage.

5. The scheduler then calls the interpreter to run the program of thentagent (retrieved by ac-
cessingprogram(self)in the current state).

6. The interpreter evaluates the program.

7. When evaluation is complete, the interpreter notifies the scheduler thatéherétation is fin-
ished.

8. The scheduler then selects another agent in the selected set of digdei® are no more agents
left in the set, the scheduler calls the abstract storage to fire the accunupatztes.

9. The abstract storage notifies the scheduler whether the updates setyheonflicts or it was suc-
cessfully fired. This notification can lead to selection of a different sudfssgents to be executed
in the step, or can be sent back to the Control API.

2.1. CoreASM Components

In this section we present in more detail the basic components @&aheASM engine, together with
their extensibility mechanisms. The architecture is partitioned along two dimensead-igure 4).
The first one, that we already presented, identifies the four main moghaese(, interpreter, scheduler,
abstract storage) and their relationships. The second dimension, thaillvdéscuss in Section 2.3,

31t is important to mention that the rollback mechanism can only rollback alatedienvironment as part of a simulated run
(e.g., when monitored function values are read from a file), whetea%eal” environment (e.g., aow function reading a
real-time clock) cannot be rolled back.

4This may include a series of interactions between the interpreter and tinacalstorage to get values from the current state,
which in turn may require interpreting other code fragments, e.qg.,doved functions.

76 R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine

Parser Interpreter %Abstract Storage§ Scheduler
2 ‘ Sets | Round-robin ‘
5
° ‘ Pseudo-random ‘
e ; ,
=1 i
o i i
g ‘ Rationals | Priority Based |
8
5 ‘ | Always-first |
g
g
5 ‘ Probabilistic Choose | l:l
:] :]
S— S —’ N s’
Rules Policies
~— R
—
Backgrounds

Figure 4. Layers and Modules of tidoreASM Engine.

distinguishes between what is in tkernelof the system — thus implicitly defining the extreme bare
bones ASM model — and what is instead provided by extension plug-ins.

The reader may notice that these two dimensions are instances of what iSkhditArature have
been callednodular decompositioandconservative refinemengspectively. In particular, our plug-ins
progressively extend in a conservative way the capabilities of the |gegaecepted by thEoreASM
engine, in the same spirit in which successive layers of the Java [51#n#l1] languages have been
used to structure the language definition into manageable parts.

The first module in our architecture is the parser. The parser genamatesated abstract syntax
trees for rules and programs of a giv€oereASM specification. Each node in these trees may have
a reference to the plug-in where the corresponding syntax is defiredexBmple in Figure 5, there
are nodes that belong to the backgrounds of sets and Booleans; thimatif;m will be used by the
interpreter and the abstract storage to perform operations on thesg witd respect to the background
each node comes from.

The second module, the interpreter, executes programs and ruleib)ypoahing upon background
plug-ins to perform expression evaluation, and upon rules plug-ins tpietecertain rules. It obtains
an annotated parse tree from the parser and generates a multigetadé instructionseach of which
represents either an update, or an arbitrary instruction which will beepsed at a later stage by plug-ins
to generate the actual updates (as will be described in more detail on DAg&!® interpreter interacts
with the abstract storage to retrieve data from the current state and tytiexestatements it gradually
creates the update set leading to the next state.

The abstract storage maintains a representation of the current state rohtféne that is being
simulated. The state is modeled as a map from locations to opaque elements fv@rsaELEMENT.
The abstract storage also provides interfaces to retrieve values fgbraralocation in the current state
and to apply updates.

SWhere no confusion can arise, in the following we use the generic terdatap” to refer both to actual updates and to update
instructions.

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine 77

k() =={z |z € AAp(z)}

Boolean

Figure 5. Sample Annotated Parse Tree.

In addition, it also provides other auxiliary information about the locationsuofent state, such as the
ranges and domains of functidrsr the background to which a particular function or value belongs to.

Finally, the scheduler orchestrates every computation step of an ASNhrarsequential ASM, the
scheduler merely arranges the execution of a step: it recei@dE®command from the control API,
invokes the interpreter, and instructs the abstract storage to aggregatdthte instructions and fire the
resulting update set (if consistent) when the interpreter finishes the gwalwé the program. It then
notifies the environment through the Control API of the results of the step.

For distributed ASMs [16], the scheduler also organizes the executiagerits in each computation
step. At the beginning of each DASM computation step, the schedulerehaaubset of agents which
will contribute to the computation of the next update set. The scheduler dinetetigcts with the abstract
storage to retrieve the current set of DASM agents, to assign the texecuting agent, and to collect
the update set generated by the interpretation of all the agents’ proddguiates are then fired and the
environment is notified as for the previous case.

2.2. Engine Life-cycle

The whole process of executingGoreASM specification using th€oreASM engine consists of the
following steps:

1. Initializing the engine

(@) Initializing the kernel
(b) Loading the plug-ins library catalogue
(c) Loading and activating plug-ins from a standard library

®Here, byrangeanddomainof a function we respectively refer to the set of all arguments for witietfunction value is not
undefand the set of all function values which are notef

78 R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine

_ _ Step . ;
ﬂ > NotifyFailure
- , - Siep NotifySuccess
: Succeeded
CONTROL API |

Starting Step
Scheduler

:

Figure 6. Control State ASM of a STEP command: Control API Med

2. Loading aCoreASM specification

(a) Parsing the specification header

(b) Loading further needed plug-ins as declared in the header
(c) Parsing the specification body

(d) Initializing the abstract storage

(e) Setting up the initial state
3. Execution of the specification

(a) Execute a single step

(b) If termination condition not met, repeat from 3a

At the end of the execution of each step, the resulting state is optionally mailigbéer by the abstract
storage module for inspection through the Control API. The terminationitomdan be set through the
user interface of th€oreASM engine, choosing between a number of possibilities (e.g., a given number
of steps are executed; no updates are generated; the state doemet after a step; an interrupt signal
is sent through the user interface).

In the following we present a high-level but precise specification of ¥eewion process (step 3a
above) which was presented informally at the beginning of this sectionstfingture of the specification
is that of a control state ASM, as shown in Figures 6 to 9. The currentcftateeh ASM is given by the
variableengineModdhat controls the execution of rules at any step. The ASM rules comespgpto the
control state ASM are also presented.

The engine starts its execution in tlte state of the Control API module (Figure 6). In this state,
the engine simply waits for STEPcommand from the environmeénte.g., an interactive GUI or a
debugger), to start the actual computation; this is performed by changirstette tdStarting Stepvhich
then transfers the control flow to the scheduler.

"The Control API provides several other commands that are needeglEment a complete execution environment; we restrict
ourselves to the most bassTEPcommand here to keep the presentation manageable.

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine 79

Selecting lagentSer| =1 Step

__ StartStep |—>| RetrieveAgents Agents Succeeded
Control APL
True -
Choosing
‘Agonts SelectAgents

ChooseAgent

-\bstract Storage
False
Choosing
Next Agent AccumulateUpdates
m

8 Update - N True
HandleFailedUpdate > orel

False

> Step Failed

Control APT

. . Program
— InitiateExecution q ogra
Execution
5 4 Interpreter _

SCHEDULER .-~

p

Figure 7. Control State ASM of a STEP command : Scheduler.

! o — 4 .---__ —
4 Initalizng) - | ¢ mtiagee
e C hos — =
_ ZELE . SetChosendgent GetChosenProgram _ Erscution ./I .
s "-—-"| S:h»&alw__.

o .Flll.' i '.I,.l'f ::Fld.ﬂ'.a -H\I
N [egeepens |l
—H/ Apzresats A tellpdate consistensjupdaneer)
.\..--_ge_ :]j-./l—b ggregatelipdates —ﬁ-(\

i } b
e
S E Step ™
FirellpdateSat ”l_\xr:.'_lttaadﬂd 6’ .
. — —T :ml::hl.-'LP":___

Figure 8. Control State ASM of a STEP command : Abstract §era

" ABSTRACT STORAGE _

The StartStep rule in the scheduler simply initializegpdatelnstructiongthe multiset of accumulated
update instructions for the steggentSe(the current set of agents of the simulated machine),sand
lectedAgentsSdthe set of agents selected to perform computation in the current step)aftér is then
assigned a value in tiRetrieveAgents rule by querying the abstract storage module for the current value
of agentsn the simulated machine. We model the query process through the abstretatfigetValuég!)
which takes a locatioh and retrieves the value of the location from the simulated state (a dual macro
Setvalue models the process of sendinglavalue) pair to the abstract storage module for storing). We
use the notatiorterm” to denote the quoted variable or literal tetemm in the simulated machine. The
state is then changed 8electing Agents

80 R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine

" INTERPRETER

Program
Execution

ExecuteTree parent(pos) = undef

Choosing
Next Agent
Scheduler

Figure 9. Control State ASM of a STEP command : Interpreter.

False

Scheduler
StartStep =

updatelnstructions= {}
agentSet= undef
selectedAgentsSet {}

RetrieveAgents =
agentSet= getValué(“agents”, ()))

In the Selecting Agentstate, if no agent is available to perform computation, the step is considered
complete; otherwise, theelectAgents rule chooses a set of agents to execute in the current step. Pass-
ing then through th&€hoosing Agentstate, theChooseAgent rule chooses an agent from this set and
changes the state taitializing SELFwhich leads to the execution of tl&etChosenAgent rule in the
abstract storage module. After the execution of the agent, the computatésjaae accumulated By-
cumulateUpdates rule in theChoosing Next Agerstate, and control is moved back@hoosing Agents
until all selected agents have been executed.

Scheduler
SelectAgents =

chooses with s C agentSet |s| > 1 do
selectedAgentsSet s

ChooseAgent =
chooseu in selectedAgentsSed
removea from selectedAgentsSet
chosenAgent= a
ifnone
chosenAgent= undef

AccumulateUpdates =
add updatesgroot(chosenPrograr) to updatelnstructions

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine 81

Two rules in the abstract storage module take care of setting the chosen(lagessigning it to
the special variableelf in the simulated state) and of retrieving the program associated with the chosen
agent (by accessingrogram(self) in the simulated state). Control then moves back to the scheduler at
thelnitiating Executionstate.

Abstract Storage
SetChosenAgent =

SetValue((“self", ()), chosenAgent

GetChosenProgram =
chosenProgram= getValug(“program”, (“self")))

The execution of the program of the chosen agent is initiated irniti@ating Executionstate in
the scheduler and then starts in fBgram Executiorstate in the interpreter. During the execution,
computed update instructions are progressively addeddatelnstructionsand when all selected agents
have performed their computation, control moveéggregationstate in the abstract storage, where the
final update set is calculated and then applied to the current state.

Extending the basic idea presented in [51], we interpret a programdogiating values, updates
and locations to nodes in the abstract syntax tree of the program. Befaedlastarting the interpreter,
the InitiateExecution rule removes the previously computed values from the tree (througbld¢h€eTree
macro, and sets the current position in the tree (denoted by the nullanjofupos) to the root node
of the tree that represents the current program (that is, the prodrtiva ourrent agent, as established
above).

Scheduler
InitiateExecution =

pos:= root(chosenProgram
ClearTree(pos)

The specification of the interpreter is explored in more detail in Section 3. dVetdinclude here
the full specification for the interpreter; we show instead its most interestaimife, that is the way it
interacts with rule and background plug-ins to delegate interpretation okueiated extensions. As
already discussed earlier, nodes of the parse tree correspondirgmmgr rules provided by a plug-
in are annotated with the plug-in identifier; here we abstract from the defalisve this annotation
is implemented, and use instead an oracle fungdiagin(nodg for this purpose. If a node is found
to refer to a plug-in, rules provided by that plug-in are obtained througiplthyinRulefunction and
executed; otherwise, the kernel interpreter rules (see Section 33@ale Results of the interpretation of
nodepos are stored alongside the node, and accessed by three functions, ratoelpos) will return
the computed value for an expression nodedategpos) will return the set of updates generated by
a rule node, antbc(pos) will return the location denoted by the node (which is used as Ihs-value for
assignments). Section 3.1 presents a more precise definition of theseranctio

82 R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine

Interpreter
ExecuteTree =

if —evaluatedpos then
if plugin(pos) # undefthen
let R = pluginRuléplugin(pos)) in
R
else
Kernelinterpreter
else
if paren{pos) # undefthen
pos := paren{pos)

Notice also in the macro above how as soon as a node is fully evaluateelgktstanch), the current
positionvalugpos) is moved back to the parent node, if any, to continue evaluation.

After executing the programs of all the agents selected irBdecting Agentstate, all the update
instructions will have been accumulateduipdatelnstructions Control will move fromChoosing Agents
in the scheduler té\ggregationin the abstract storage module. In tAggregationstate, the abstract
storage aggregates update instructions to compute updates on the lochtibestate (through the
AggregateUpdates rule), checks the consistency of the computed updates (possibly intgractimthe
relevant background plug-ins to evaluate equality), and either appliesptietes to the current state
of the simulated ASM byFireUpdateSet (thus obtaining its next state), or provides an indication of
failure by changing the state of ti@oreASM engine toUpdate Failed It is worthwhile to remark that
aggregation, which is the process of interpreting accumulated updatectisigito generate a set of
updates, is obtained by delegating the actual interpretation to those pluginzrdiide aggregation
services, as shown in the rule below:

Abstract Storage
AggregateUpdates =
letap = {a | @ € PLUGIN A aggregatofa)} in
updateSet= Upe(w InvokeAggregation(p, updatelnstructions
FireUpdateSet =
forall (I,v) € updateSetio
SetValue(l, v)

Update instructions (vs. basic ASM updates) and the aggregation pleisagtiregates those in-
structions into basic ASM updates are designed to support simultaneoasmarial modification of
data structures iCoreASM. The idea of update instructions is inspired by the work of Gurevich and
Tillmann on partial updates [39, 40] where they provide an algebraic fsamketo support simultaneous
partial modification of data structures in Parallel ASMs and a systematic agpto ensure the con-
sistency and integrity of such modifications. The relationship between thefdgalate instructions in

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine 83

CoreASM and the partial update framework deserves an in-depth comparisontefdia@proaches and
a discussion on their pros and cons, which is beyond the scope of tles pegpintend to further address
this in a separate paper.

If an inconsistent set of updates is generated in a stepjaheleFailedUpdate rule in the scheduler
module selects a different subset of agents for execution, and the stejniiated. The process is
iterated until a consistent set of updates is generated, in which casentpetedion proceeds in thgtep
Succeededtate of the Control API, or all possible combinations have been exhaustetiich case
the Step Failedstate is entered instead. It should be noted that the selection will also cossidets
containing a single agent, so the process fails only when no agent caassfidly perform a step.

Depending on the outcome of the previous stage, eitheKtti®/Success or the NotifyFailure rule
in the Control API notify the environment of the success or failure of the, stad return to thédle
state awaiting further commands from the environment (e.g., an8(hEPcommand to continue the
computation).

2.3. Plug-ins

In keeping with the micro-kernel spirit of thieoreASM approach, most of the functionality of the engine
is implemented through plug-ins to a minimal kernel. The architecture suppaesdlasses of plug-ins:
backgroundsrulesandpolicies whose function is described in the following.

e Background plug-ins provide all that is needed to define and work withbraekgrounds, namely
(i) an extension to the parser defining the concrete syntax (operataaglitgtatic functions, etc.)
needed for working with elements of the background; (ii) an extension talikiact storage pro-
viding encoding and decoding functions for representing elements oftleggtound for storage
purposes, and (iii) an extension to the interpreter providing the semantiedl the operations
defined in the background.

¢ Rule plug-ins are used to implement specific rule forms, with the understatidinthe execution
of a rule always results in a (possibly empty) set of updates. Thus, tbkeya(i) an extension to
the parser defining the concrete syntax of the rule form; (ii) an extensitwe iaterpreter defining
the semantics of the rule form.

e Policy plug-ins are used to implement specific scheduling policies for multitag@lls. They
provide an extension to the scheduler, that is used to determine at eathestegxt set of agents
to execut®. It is worthwhile to note that only a single scheduling policy can be in forcangt
given time, whereas an arbitrary number of background and rule pfugain be all in use at the
same time.

In CoreASM, the kernel (see Figure 4) only contains the bare essentials, that igta# treeded to
execute only the most basic ASM. As the state of an ASM machine is definemhbtydns and universes,
the two domains ofunctionsanduniversesare included in the kernel. Universes are represented through
their characteristic functions, henbeoleansare also included in the kernel. As an ASM program is
defined by a finite number of rules, the domainrokes is also included in the kernel. It should be

8The policies in these plug-ins can also be called upon for implementinghtheserule; an extension plug-in provides an
enhanced version @hoosethat allows the specifier to explicitly state which policy to use.

84 R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine

noted that the kernel includes the above mentioned domains, but not all ekpiected corresponding
backgrounds. For example, while the domain of booleans (thatiessandfalse) is in the kernel, boolean
algebra {, Vv, —, etc.) is not, and is instead provided through a background plug-in. Isaime vein,
while universes are represented in the kernel through set chaséctiemctions, the background of finite
sets is implemented in a plug-in, which provides expression syntax for dgfimém (see the example in
Figure 5), as well as an implicit representation for storing sets in the abstaée, and implementations
of the various set theoretic operations (eg).that work on such implicit representation.

The kernel includes only two types of rules: assignmentiambrt. This particular choice is moti-
vated by the fact that without updates established by assignments thdebeouo way of specifying
how the state should evolve, and thiadport has a special status due to its privileged access to the
Reserve. All other rule forms (e.gf, choose forall), as well as sub-machine calls and macros, are
implemented as plug-ins in a standard library, which is implicitly loaded with €ackeASM specifica-
tion.

Finally, there is a single scheduling policy implemented in the kernel, namely thel@sandom
selection of a single agent at a time, which is sufficient for multi-agent ASKerevno assumptions are
made on the scheduling polity

In addition to modular extensions of the engine, plug-ins can also registaséhees folExtension
Points Each state transition in the execution engine is associated to an extensipipaimy extension
point, if there is any plug-in registered for that point, the rule provided bypthg-in at registration time
is executed before the engine proceeds into the new state. Such a mecbaaldes extensions to the
engine’s life-cycle which facilitates implementing various practically relevaatures such as adding
debugging support, adding a C-like preprocessor, or performingtatatianalysis of the behavior of
the simulated machine (e.g., coverage analysis or profiling). A plug-inxample, could monitor the
updates that are generated by a step before they are actually applieatortre state of the simulated
machine, possibly checking conditions on these updates and thus implemekitipcd watches (i.e.,
displaying updates to certain locations) or watch-points (i.e., suspendingtion of the engine when
certain updates are generated), which are useful for debuggipgses.

As already mentioned, theéoreASM engine is accompanied bystandard libraryof plug-ins in-
cluding the most common backgrounds and rule forms (i.e., those define@]jndm extension library
including a small number of specialized backgrounds and rules, anddiyoaspecifications for writing
new plug-ins that can easily be integrated in the environment. Extensionindugust be explicitly
imported into an ASM specification by an expliogedirective.

3. TheCoreASM Language

We specify theCoreASM language (both its syntax and the corresponding semantics) througtettie sp
ification of an interpreter. The specification of the kernel interpretesgums the core constructs of the
language, which is then extended by standard library plug-ins to inclusie B&M constructs such
as the block rule and the conditional rule. The language is then furtherdedeoy Turbo ASM rules
such as the sequence ruie@ and the iteratoriferate). An example of extending the language with
non-standard rules is also provided at the end of this section. For a ebermive specification of the

®Notice that this particular scheduling policy guarantees the coherendéioorof partially ordered runs, which is not guaran-
teed by the general definition of the scheduler, since the latter only cfaaésnsistency, and not for coherence.

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine 85

interpreter see [27]. We start this section by presenting the notation thsedkimi the specification of
the interpreter.

3.1. Notation

We specify the interpreter as a collection of rules (some embedded in thel,ketiners contributed
by plug-ins) which traverse a parse tree while evaluating values, locaimhsipdates. We state the
following assumptions:

1. nodes in the tree are in the domain of the following (mostly partial) functions:

e first : NoDE — NODE, next: NobE — NODE, parent: NObE — NODE are static functions
that implement tree navigation; by using these functions, the interpreterccassaall the
children nodes of a given node, or go back to its parent, (see Figureréférence);

e class: NobeE — CLAss returns the syntactical class of a node (i.e., the name of the corre-
sponding grammar non-terminal class); for exantpléeDecl

e token: Nobe — TOKEN returns the syntactical token represented by the node (i.e., either a
keyword, an identifier, or a literal value); for exampl23

e pattern: NoDE — PATTERN returns the symbolic name for the specific grammar pattern
corresponding to the node; for exampfiehen for the patternf ...then...

e [-] : NobE — Loc x UPDATEs x ELEMENT holds the result of the interpretation of a node,
given by a triple formed by a location (that is, the |-value of an expressiben it is de-
fined), a multiset of update instructions, and a value (that is, the r-valae ekpressiony.
We access elements and establish properties of such triples through therfgliterived
functions:

— loc : Nobe — Loc returns the location (I-value) associated to the given node, i.e.
loc(n) = [n] | 1.

— updates: Nobe — UPDATES returns the updates associated to the given node, i.e.
updatesn) = [n] | 2.

— value: NobE — ELEMENT returns the value (r-value) associated to the given node, i.e.
valugn) = [n] | 3.

— evaluated Nope — BooLEAN indicates if a node has been fully evaluated. We have,

evaluatedn) = [n] # undef

e plugin : Nobe — PLUGIN is the plug-in associated to expression and statement nodes, that
is, the plug-in responsible for parsing and evaluation of the node.

2. aspecial variablposholds at all times the current position in the tree;

19The structure of the triple is intended to be mnemonic, with the I-value in the lsttamdl the r-value in the rightmost position
in the triple.

86 R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine

3. we use a form of pattern matching which allows us to concisely denote cornmiditions on the
nodes. In particular:

e we denote witlj?] a generic node;

e we denote with] a generic unevaluated node; as an aid to the reader, we will also use
the semantically equivaleifd, [r], and[]] to denote unevaluated nodes whose evaluation is
expected to result respectively, in a value (from gpression), a set of updates (fromude),
and a bcation;

e we denote withx an identifier node;

e we denote withv (value) an evaluated expression node (that is, a node wiadseis not
undej; we denote withu (update set) an evaluated statement node (a hode wipasdess
notundej; we denote with (location) an evaluated expression for which a location has been
computed (a node whosec is notundej. We will at times add subscripts to these variables,
or use different names for special cases that will be discussed expaippe;

e we use prefixed Greek letters to denote positions in the parse tree (typicdsea of the
current node, as denoted pg9 as inif “e then #r wherea and denote, respectively, the
condition node and the then-part node of an if statement;

e rules of the form
(pattern) — actions

are to be intended as
if conditionsthen actions

where theconditionsare derived from the pattern according to the conventions above, as
more formally specified in Table 1; in the action part of such a rule, an uadwmd unbound
occurrence of is to be interpreted as tHec of the corresponding node; an unquoted and
unbound occurrence af is to be interpreted as thealue of the corresponding node; an
unquoted and unbound occurrenceuoés theupdatesof the corresponding node; and an
unquoted and unbound occurrencexais thetokenof the corresponding node.

Table 2 exemplifies how our compact notation can be translated into actuakr A8/

4. the value of local variables (e.g., those definedktrrules) is maintained by a global dynamic
function of the formenv: ToKEN — ELEMENT

5. a static functiorbkg : ELEMENT — BACKGROUND provides, for any arbitrary value, the back-
ground of the value oundefif the value is native in the core.

Notice that, according to the rukexecuteTree previously described in Section 2.2, interpreter rules
in the kernel or from plug-ins are only executed wiesaluatedpos does not hold, i.e. when the current
node has not been fully evaluated yet. Control moves from node to nibge by explicitly assigning
values topos or by setting[pog to a value that is notindef in which case, control is returned to the
parent ofposby the ExecuteTree rule (unless an explicit assignmentposis also made in the same
step). Hence, the general strategy in our rules will be to evaluate alederidbtrees of a node, if any,
by orderly assigningosaccordingly; when all needed subtrees are evaluated, we computestitenge

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine 87
Abbreviation Condition part Action part
a, B etc. first(pos), nextfirst(pos)), etc.

syntax pattern| patterrn(pog=pattern name

12 clasga) # Id

] clasga) # Id A —evaluatedx)
“el, “I), [* | clasga) # Id A —evaluatedo)

X clasga) = Id toker(«)

Y valug o) # undef valug)

Yy updatesa) # undef updatesa)

B/ loc(ar) # undef loc(a)

* These symbols are semantically equivalent td theymbol; as a visual cue to the reader, the embedded letters express the
intended result of evaluation.

Table 1. Abbreviations in syntactic pattern-matching sule

Actual rule
if clasgpos # Id
A pattern(pos) = IfThen
A clasgfirst(pos)) # Id
A —evaluatedfirst(pos))
A clasgnextfirst(pos)) # Id
A —evaluatednextfirst(pos)))
then
pos:= first(pos
if clasgpos # Id
A patternpos = IfThen
A valug(first(pos)) # undef
A clasgnextfirst(pos)) # Id
A —evaluatednextfirst(pos)))
then
if valugfirst(pos)) = ttthen ...
if clasgpos # Id
A patternpos = IfThen
A valugfirst(pos)) # undef
A updatesgnex(first(pos))) # undef
then ...

Compact notation

(if “[g then A[]) — pos:= a

(if “v thenA[]) — if v =ttthen ...

(if “v thenBu) — ...

Table 2. Examples of how pattern matching notation is tegedlinto ASM rules.

88 R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine

location, updates or value and assign ifftes], thus implicitly returning control back to our parent.
As exemplified in Table 2, our notation allows us to clearly visualize this prdegdke progressive
substitution of evaluated nodes for unevaluatgd nodes, and of or [nodes for unevaluatdged nodes.
Notice that identifiers do not have to be evaluated, hence we do not ribeseal” version ofz.

3.2. Kernel Interpreter

The kernel behavior of the interpreter which specifies the core catstofithe language is defined by
Kernellnterpreter rule (seeExecuteTree in Section 2.2). In this section, we present a definition of this
rule in form of parallel composition of pattern-action rules, which ultimatelym#sfihe core syntax and
semantics of the language. The definition is presented in two parts: patiemgfessions and patterns
for rule forms.

3.2.1. Kernel Expression Interpreter

As previously described, kernel rules implement the Boolean domain ¢b8tavlean algebra), function
evaluation and rule call (which share the same syntactic pattern), assig@ameimport statement. We
present in this section rules that result in values, namely for evaluatingdiignae, false, undef) and
nullary orn-ary functions.

Literals are simply lifted to their semantic counterparts:

Kernel Expressions: Literals
(true) — [pod := (undefundeftt)
(false) — [pog := (undefundef ff)
(undef) — [pog := (undefundefuu)

Evaluation of identifiers as expressions depends on whether the iderdfées to a local variable
or a function. To evaluate an identifier as an expression, the interpmstectfecks the set of in-scope
local variables for a possible value for the identifier. If the identifier watsanlocal variable (i.e., it is
not found in the local environment), the interpreter checks if the identéfers to a (nullary) function,
in which case the abstract storage is queried for the value of that functibe current state. If instead
the identifier is not defined, the maasandleUndefinedidentifier (which we will describe later) is called.
The rule forn-ary functions is similar, except that the arguments of the function areatealdirst. The
formal definition is as follows:

Kernel Expressions
(*x) — if enyx) # undef
[pog := (undefundefenyx))
else

if isFunctionNamé&) then

letl = (x,())in

[poq := (I,undefgetValugl))

if undefinedx) then

HandleUndefinedIdentifier(X, {))

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine 89

(xM@, - @) — if isFunctionNamex) then
choosei € [1..n] with —evaluated),)
pos:= \;
ifnone
letl = (X, (valugAy),...,valugA,))) in
[pog := (I, undef getValu€l))
if undefinedx) then
HandleUndefinedldentifier(X, (A1, ..., An))
where
undefine@x) = Ae € ELEMENT : namée) = X
isFunctionNamgx) = Je € ELEMENT : namée) = X A isFunctior{e)

Notice how in the second pattern, tflesymbol is used to denote arguments, both unevaluated and
evaluated. I is bound to a function, the rule specifies that all arguments must be evaluatieout
any specific order, to determine the location of the node. While there arenghlaluated arguments, the
rule setgosto a node representing an unevaluated argument; as soon as the evalfist@argument
is complete, control returns to the parent node (and thus, again to the gianaintil all arguments are
evaluated. At this poiniffione branch), the location and values of the function are computed and stored
in [pog.

Finally, if the interpreter encounters an identifier that is bound to no elemeheistate, thélan-

dleUndefinedldentifier rule will create a new function element with a default valueiodeffor the given
arguments:

HandleUndefinedldentifier
HandleUndefinedldentifier (x, args) =

let f = new(ELEMENT) do
isFunctior(f) := true
namef) := x
[pog := ((x, args), undefuu)

Extending the standard definition, but in keeping with common practice, weabdso expressions
to refer to functions (and rules, as we will see later), which can thus b&ettas first-order objects in
the language. The following rules apply to functions where the function itsgiffen as an expression.
In these cases, we first evaluate the expression, and if the resultistefuvalue, we handle it as in the
previous case. Notice though that we do not allow nullary functions to &esaed directly through an
expression, to avoid syntactic ambiguity; in such cases, an empty pairasitpasis has to be used to
distinguish between the function value itself (without parenthesis) and the wéthe nullary function
represented by the function value (with parenthesis).

90 R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine

Kernel Expressions: Application

(](XD(A117'--’)\'LTL)D — pos:= «

(*oM@,..., @) — if isFunctior(v) then
choosei € [1..n] with —evaluated),)
pos:= \;
ifnone
let z = naméwv) in
letl = (z, (valug\1),...,valug\,))) in
[pog := (I, undef getValu€l))

3.2.2. Kernel Rule Interpreter

Rule plug-ins provide the semantics for executing rules. Execution of ragests in a set of update
instructions that is the underlying value for the rule node of the parseAediscussed in Section 2.2,
accumulated update instructions are used by the abstract storage to conepupslates set that will
ultimately be applied to the current state to generate the next state.

To evaluate an identifier as a rule, the interpreter first checks if a rule etésrimound to the identifier.
If so, theRuleCall macro is called to execute the rule, which we will describe shortly. Notice thhisn
case arguments aret evaluated prior to calling the rule: in fact, the semantics of rule calls in [16]
prescribes that the entire term used as actual argument must be subgtitbtbrmal parameter in the
body of the rule, not its value. Also, note that when the rule to call is dertbtedgh an expression,
the rule(*[J(*'[@1, ..., [F.)) — pos:= « from functional application above applies, hence we do
not need to repeat it here; after evaluation, the paitéeh, . . ., [?],,) applies, for which we provide here
another rule (mutually exclusiVewith the one for functional application) to handle rule calls.

Kernel Rules
(*x) — if isRuleNamgx) then

RuleCall(ruleValugx), ())

(XM Ar, - M) — if isRuleNamé) then
RuleCall(ruleValugx), (A1, . .., An))

(oM@, ., Fn)) — if isRulgv) then
RuleCall(v, (A1,...,An))
where
isRuleNamgx) = Je € ELEMENT : namée) = X A isRul€e)

"Mutual exclusion is due to the two guarg&unctionNamér) andisRuleNamér) which prevent execution of both rules on
the same node.

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine 91

Traditionally, rule calls in ASMs have been used in two form: as macros, sulzsnachines. The
difference between the two forms is that calling a macro simply means executiaglifgpossibly with
parameters substitution) and collecting the resulting updates, whereasgarsubmachine results in an
entire encapsulated computation of the rule, that is iterated until completioefinedlin [16] Section
4.1.2. Here, we model macro calls, while the effect of submachine callsroptyse achieved by using
theiterate construct (see Section 3.4.1).

As we have already noted, ASMs differ from many other languages icafiaby-substitutions used
for parameters instead of the more ustall-by-value In other words, actual parameters are evaluated
at the point of use (in the callee) rather than at the point of call (in the Laldele to the presence ség
rules, the difference can be observable, as parameters can baedaiudifferent states. Hence, we have
to substitute the whole parse tree denoting an actual parameter (i.e., ags@pyéor each occurrence
of the corresponding formal parameter in the body of the callee. Alsoubstitute parameters in a copy
of the callee body, to avoid modifying the original definition.

There are several static semantic constraints on valid rule declaratiorexdimple, it is assumed
that the formal parameters of a rule are all pairwise distinct, and that thmaf@arameters are the only
freely occurring variables in the body of the rule (see [16], Definition1B}% For simplicity, we do not
explicitly check for such conditions in our specification.

The RuleCall routine, defined below, describes how calls for rules (possibly withnpeters) are
handled.

RuleCall
RuleCall (r, args) =
if workCopypos = undefthen
let b’ = CopyTreeSub(body(r), param(r), args) in
workCopypos) := b’

paren{d’) := pos
pos:= b’
else

[pog := (undefupdate$workCopypos)), valugworkCopypos)))
workCopypos) := undef

The rulecopyTreeSub returns a copy of the given parse tree, where every instance of atifiiele
node in a given sequence (formal parameters) is substituted by a coipy obrresponding parse tree
in another sequence (actual parameters). We assume that the elemenfeim#igarameters list are
all distinct (i.e., it is not possible to specify the same name for two differeranpeters). Also, formal
parameters substitution is applied only to occurrences of formal paranretdes original tree passed
as argument, andot also on the actual parameters themselves. A full definitioGadyTreeSub is
provided in [27].

The kernel of the&CoreASM engine also includes assignment amghort . Assignment is performed
as follows:

92 R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine

Kernel Rules: Assignment
“A="A) - chooser € {a, 8} with —evaluatedr)
pos =T
ifnone
if loc(a) # undef
[pog := (undef {({loc(«), valug3))}, undef
else
Error(‘Cannot update a non-locatiohn.’

It is worthwhile to remark that the rule above does not syntactically consassignment to be per-
formed exclusively to variables or functions: rather, any plug-in cantrimute new forms of expressions
which, as long as they result in a location, are deemed syntactically acleejptabe Ihs of an assign-
ment.

Theimport rule is defined as follows:

Kernellnterpreter: import

(import “xdo”[[]) — let e = new(ELEMENT) in
enyx) :=e
pos:= (3
(import *x do Au) — enyx) := undef // No nesting

[pog := (undefu, undej

To perform arimport, a new element is created and it is assigned to the value of the given identifier
(x) in the local environment. The rule p&itis then evaluated in this new environment by assigipiog
to the corresponding node. The local value of the given identifier is #ieto gsndefwhen the evaluation
of the rule part is complete.

3.3. Standard Library

The CoreASM language is accompanied by a set of plug-ins which provide all the ruesfdefined
for Basic ASMs in [16] and several commonly used backgrounds wittesponding operations. These
plug-ins form thestandard libraryof CoreASM, which is implicitly loaded with any specification. Space
limitations prevent us from providing a full account of the standard libreese, but we present in this
section a selection of some of these plug-ins to give an intuition of how plugrespecified.

3.3.1. Standard Rules

We initiate by presenting rule plug-ins for some of the rule forms defineddsidBASMs. As the reader
will recall, only assignment antnport are defined in the kernel, with almost everything else being
provided by these plug-ins. The most fundamental rule is the block-peejfed as follows?

2we provide here a rule for an-elements block, whereas one for a two-elements block would suffioticéNalso that the
same rule could be used for the alternative syngpar 2, meaning that? and @) are to be executed in parallel. Finally,
also note that we are disregarding here the scope constructors prdyidiee grammar — either relying on brace$ or on

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine 93

BlockRule
({M[;...;*[@}) — choosei € [1..n] with —evaluated);)
pos:= \;
ifnone
[pog := (undefJ;c[; ., update$);), undef

Here, all the rules in a block are evaluated in an unspecified order, witfingderesult being the
union of all the updaté$ produced by the various rules in the block.

Close in importance to the block-rule comesitheule. We accept a slightly extended syntax, where
the guard is not restricted to be a formula (as per Definition 2.4.14 in [16{);ather any expression
that returns a Boolean. This guarantees that plug-ins will be able to etktersét of allowable guards as
needed. Notice that this approach is conservative w.r.t. the standarifidefigiven that formulae in the
sense of [16] are indeed expressions (supported by the Boolea@uardifiers plug-ins in our standard
library).

IfRule
(if *@ then”[]) — pos:= «
(if @v then A[1]) - if v = tt then pos:= 3
else ifv = ff then [pog := (undef {}, undej
elseError(‘Condition must be either true or falsg.’
(if @v then Bu) — [pog := (undefu, undej
(if [thenf[Jelse’[]) — pos:= «
(if *v then A[7] else™[1]) - if v = tt then pos:= 3
else ifv = ff then pos:= ~
elseError(‘Condition must be either true or falsg.’
(if @v then Ay else[r]) — [pog := (undefu, undej
(if @v then A[7] elseu)) — [pog := (undefu, undef
To show how the local environment is modified, we present the specificaititie let-rule:
LetRule

(let®z =PQin[]) — pos:= 3

(let*z = By in 7[f]) — pos:= v
enz) :=v

(let®z = Bvin Tu) — enz) := undef // No nesting
[pog := (undef u, undej

indentation to express nesting are common choices.
BMore precisely, the multiset-union of the update instructions returned byikbe

94 R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine

3.3.2. Standard Expressions

Commonly used expression forms are also added to the language by trerdtiérdry. This section ex-
emplifies this approach by presenting three examples: the equivaleneg¢aspthe Boolean conjunction
operator, and the integptusoperator.

In the equivalence operator, two values are considered to be equal ibray if at least one of
their backgrounds regards them as equal. In the following rule, thdiggfuenction provided by the
backgrounds of the operands is queried to determine whether theyuste eq

Equivalence Operator
(°@ = °[@) — choosex € {«, 3} with —evaluated\)

pos:= A
ifnone
let e; = valuga), e = valug§) in
let by = bkg(61)7 by = bkqeg) in
if equal,, (e1,e2) vV equal, (ez, e1) then
[pog := (undefundeftt)
else
[pog := (undefundef ff)

Boolean operators are also defined in the standard library. The followiegas an example, defines
the conjunction operator:

Boolean Operator: AND
(“AAP[A) — choosex € {a, 3} with —evaluated))

pos:= A
ifnone
if (valuga) = tt) A (valug3) = tt) then
[pog := (undefundeftt)
else
[pog := (undefundef ff)

In the same spirit, the following rule, provided by the Integer plug-in, deftheplus operator on
integer values:

Integer Operator: Plus
(“@A+P@) — choosex € {a, 3} with —evaluated))

pos:= A
ifnone
let v = pluspi(valuga), valug3)) in
[pog := (undefundefv)

Other operators and standard backgrounds follow in the same vein, eamdllnot insist here on
their formal definition.

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine 95

CoreASM defines a special framework to handle operator extensions providptugyins. Such
a framework allows the engine to support operator overloading and¢esdbe redundancy of operand
evaluation. Operator evaluation and extensionSaneASM are presented in more detail in [45, Ch. 6].

3.4. Extensions

In addition to basic ASM rules, Turbo ASM rules presented in [16] are ddfimed in theCoreASM
language. In this section we present rule plug-ins for sequentiality, itaratind exception handling,
following the syntax and semantics presented in [16]. Specifications haseptiitly import these
plug-ins, differently from those in the standard library which are alweaydicitly imported. A number
of other extension plug-ins for commonly used backgrounds and rutesfare distributed together with
the CoreASM engine itself.

3.4.1. Sequentiality and Iteration Rules

Sequential execution of rules is modeled bydkegrule. Since we want to model the effect of evaluating
the second rule in a sequence in the state that would be produced by ggplyinpdates produced by
the first rule, we have to “simulate” the application of the updates, witholly ie@adifying the current
state. This is obtained by usingstackof states, managed through three macrghstate copies the
current state in the stackgpState retrieves the state from the top of the stack (thus discarding the current
state), anchpply(u) applies the updates in the update séb the current state. In addition, we will use
the macrobiff to compute the update set representing the difference between thet atatenand the
state at the top of the stack. Formal definitions for these macros are gii&f.iBased on the intuitive
understanding of these macros, the interpreter plug-in fose¢lggule can be specified as follows:

SeqRule

(°[: sed”[2) — pos:= a
(%uy seq?[(]z) - if isConsister(tz;) then

PushState

Apply(u1)

pos:= (3

else
[pog := (undefu;,undejf

(“u1 seq®usy)) — PopState
[pog := (undefu; & us, undef

where thed operator is defined as follows:
U®H = {ueU]|locationu) ¢ location§H)} U H

The intuition behind the definition ab is that updates generated by the first rule are used, except in
cases where the second rule provides a (subsequent) update to tHecatioa.

Theiterate-rule repeatedly executes its body, until the update set produced isexitipgy or incon-
sistent; at that point, the accumulated updates are computed (the resultaig sptdcan be inconsistent
if the computation of the last step had produced an inconsistent set aespdahe formal definition is

96 R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine

given below:

Iterate Rule
(iterate *[1]) — PushState

POS:= «

(iterate *u) — if u = {} v —isConsister(tz) then
[pog := (undef Diff U u, undej
PopState
else
Apply(u)
ClearTree(«)
pos:= «

Notice here how iteration is carried on in a separate state, after savinggir@bone in the stack;
after the iteration is completed, the difference between the initial and thetialis encoded as updates
to the initial state, the initial state is restored from the stack, and the computatkspate returned.
Notice also that, after each step in the iteration, the entire subtree is cleareti€ifd function of each
node is set taindej, so that the computation of the next step can proceed as usual.

3.4.2. Exception Handling

Thetry/catch construct introduced in [16] lets the specifier declare that inconsispelates on certain
locations should not abort the current run, but rather be “cauglithandled by executing a given rule.
In particular, the informal semantics for the construct

try r catchly,...,l, dogq

is to executer, and if any inconsistent update is generated for any of the locations , [,,, the updates
of r are discarded anglis executed instead. Formally, we specify thécatch construct as follows:

ExceptionRule

(try [, catch™[1]y,...,], do?[].) — pos:=a

(try “uy catch*1[3y, ..., [, do?[lz) —
choosei € [1..n] with —evaluated);) do
pos:= \;
ifnone
if isConsister(tu; | {loc(A\1),...,loc(\,)})
then
[pog := (undefuy,undej
else
pos:= (3

(try ®uy catch*iy, ... 2], doPuy) — [pog := (undefus, undej

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine 97

where the operator is defined as:

Ul H={uecU |locationu) € H}

3.5. Custom Extensions

The CoreASM language can be extended with non-standard rule forms, adding neilizgs and
improving the expressiveness of the language. In this section we ptesesuch custom extensions,
which are not part of th€oreASM library, adding respectively a parallel-case rule and a form of rules
which return a value instead of an update set.

3.5.1. A Parallel-Case Rule

We present here the specification for a plug-in implementing a parallel foroage. The syntax is
similar to the one that is used in [51], but the semantics is quite different. thefeavaluating the first
rule with a matching guard value, all the rules with matching guard values wiNdeated in parallel.
In essence, this parallel-case rule acts as a block rule in which all chislaréeguarded against a given
value.

To evaluate this rule, the case condition will be evaluated first and then glli#rds will be evaluated
in an unspecified order. Afterward, rules with a guard value equal teatue of the case condition will
be evaluated. Finally, the updates generated by the matching cases addaforen the set of updates
generated by the parallel-case rule. Formally, the construct is defirfetioags:

ParallelCaseRule

(case*[d of {M[E; — M[y;.. ;M [Fn — M [n}) — pos:=a

(case®v of {M[Ar — M[Thi...; @ — M [Ta}) —
choosei in [1..n] with —evaluated);)
pos:= \;

(case®v of {Muy — M[Fy;. .. o, — Me[Fn}) —
choosei in [1..n] with equalv, v;) A —evaluated\})
pos:= A/
ifnone
[pog| := (undefUic(y njnequat(v,n,) UPDate$A;), undef

3.5.2. Rules with a return value

A frequent and idiomatic use of Turbo ASMs is to compute functions by dkera rule and then

extracting a value from the resulting set of updates, rather than applyéngpifiates to the state. The
syntax provided in [16], however, is not particularly practical, as themaation is restricted to be a
statement assigning a value to a given identifier, and so cannot be uskdar®mplex expression. For

98 R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine

example, one has to write

x — R(ay,...,an)
y—Qbr,...,bm)
seq

zZ:=x+y

instead of the more natural

z:=R(ay,...,an) +Q(b1,...,bm)

We propose here an alternative syntax and semantics, formally desbyiled following rules:

ReturnRule
(return ¢[din []) — pos:= 3

(return @[gin Pu) — PushState
Apply(u)
pos:= «

(return “vin Au) — PopState

[pog := (undefundefv)

In this construct, the ruleis executed first; the return expression is evaluated in the state obtained by
provisionally applying the updates fronto the current state, and the resulting value is returned, while
the updates and the provisional state itself are discarded.

4. Related Work

Machine assistance plays an increasingly important role in making praggst@nss design feasible.
Specifically, model-based systems engineering demands for abstragtaiie specifications as a basis
for design exploration and experimental validation through simulation anddegtius it is not surpris-
ing that there is a considerable variety of executable ASM languagesatatbleen developed over the
years.

The first generation of tools for running ASM models on real machines gaek to Jim Huggins’
interpreter written inC [38, 42] and, even further back, to the Prolog-based interpreterrigelica
Kappel [44]. Other interpreters and compilers followed: kan EA compiler [3] from Karlsruhe
University, theschementerpreter [22] from Oslo University, and an experimental EA-terCompiler
developed at Paderborn University. Besides practical work on ASii4 taonceptual frameworks for
more systematic implementations were developed. The work oevibiging algebra abstract machine
(EAM) [19], an abstract formal definition of a universal ASM for executirg§\MAmodels, contributed to
a considerably improved understanding of fundamental aspects of nagiMg executable.

Based on such experience, a second generation of more mature ASMrtdatl environments was
developedAsmL(ASM Language) [46] and th€asm (Extensible ASM) language [1, 2] are both based
on compilers, while théASM Workbench[18] and AsmGofer[49] provide ASM interpreterd* The

14We focus here on the more common and well-known ASM tools. For a Etenpverview, see also [16], Sect. 8.3.

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine 99

most prominent one is AsmL, developed by the Foundations of Software&argng group at Microsoft
Research. AsmL is a strongly typed language based on the conceptdvie & also incorporates
numerous object-oriented features and constructs for rapid prototgpowmnponent-oriented software,
thus departing in that respect from the theoretical model of ASMs; réthemes with the richness of
a fully fledged programming language. At the same time, it lacks any built-incstfiy dealing with
distributed systems. Being deeply integrated with the software developmeuédatation, and runtime
environments of Microsoft, its design was shaped by practical needsating with fairly complex
requirements and design specifications for the purpose of softwaregtestiauch, it is oriented towards
the world of code. This has made it less suitable for initial modeling at the fethle @roblem space
and also restricts the freedom of experimentation.

The ASM Workbencis a tool environment supporting software specification, design, andatialid
in early design phases and rapid prototyping of embedded systems [2Uh&&ource language for the
ASM Workbench tools is thASM Specification Languag@SM-SL), a strongly typed language with an
ML-like type system based on parametric polymorphism. ASM-SL extendsa$ie language of ASM
transition rules by introducing additional constructs for defining ASM statetuding a collection of
predefined generic data types implementing standard mathematical strutik@dap(es, lists, finite
sets, finite maps, etc.) with associated operations. The ASM-SL languagig<gncise and close to
standard mathematical notation, making it easily readable and understandiSheSL does however
not provide any built-in support for distributed ASM models. In [50], enpdlation scheme for compiling
ASM-SL like specifications to &+ is presented, providing efficient+€ coding while preserving the
structure of the original ASM specification. Based on this work, a prtgsiecompiler was developed
and used successfully in the FALKO project at Siemens, Munich [14].

Xasm is an open source project [2] and comes with a development em@rdrconsisting of an
Xasm-to-C compiler, a run-time system and a graphical interface for detmagnd animating Xasm
models. The language provides an interface to C allowing both C-functidresused in Xasm programs
as well as Xasm modules to be called from within C-programs. A rapid pratm@ypol Gem-Mex
built around Xasm, assists the designer of a programming language in a mahduivities related
to the language life cycle (from early design steps to routine programmgels&em-Mex supports
automatic generation of documentations, generation of language implemenkstsmtson Xasm code,
and visualization and animation of the static and dynamic behavior of specifigddges at a symbolic
level. Xasm in its present form does not support distributed ASMs.

Finally, AsmGofer is an advanced ASM programming system which runs gougplatforms, in-
cluding Unix-based or MS-based operating systems. It provides an ik&lvpreter embedded in the
functional programming language Gofer, a subset of Haskell, theale-tsandard for strongly typed
lazy functional programming languages. A widely recognized applicatiohsaiGofer is its use for
executing the ASM specification of a light control system [15]. As with AsABM-SL and Xasm,
AsmGofer does also not provide built-in support for distributed ASM models

In contrast tocCoreASM, all the above languages build on predefined type concepts rather than th
untyped language underlying the theoretical model of ASMs; none of theguages comes with a run-
time system supporting the execution of distributed ASM models; only Xasmiigraekfor systematic
language extensions and in that respect is similar to our approach; émwley Xasm language itself
diverts from the original definition of ASMs and seems closer to a programfaimguage.

100 R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine

5. Conclusion

We have outlined in this paper the design of @@eASM extensible execution engine for abstract state
machines. Th&€oreASM engine forms the kernel of a novel environment for model-based egrgine
ing of abstract requirements and design specifications in the early phiatessoftware development
process. Sensible instruments and tools for writing an initial specificatioriccathaximal flexibility
and minimal encoding as a prerequisite for easy modifiability of formal spatdits, as required in
evolutionary modeling for the purpose of exploring the problem space airh of theCoreASM effort

is to address this need for abstractly executable specifications.

Aiming at a most flexible and easily extensilimreASM language, most functionalities of the
CoreASM engine are implemented through plug-ins to the b&iceASM kernel. The architecture
supports plug-ins for backgrounds, rules and scheduling policies,graviding extensibility in three
different dimensions. Henc&oreASM adequately supports the need to customize the language for
specific application contexts, making it possible to write concise and unddedtke specifications with
minimal effort.

The CoreASM language and tool architecture for high-level design, experimentalagiaid and
formal verification of abstract system models is meant to complement othe¢ingx@pproaches like
AsmL and XASM rather than replacing them. As part of future work, westom an interoperability
layer through which abstract specifications develope@€aneASM can be exported, after adequate
refinement, to AsmL or XASM for further development.

The CoreASM project [31] is an Open Source project, and as such it is in continuoasagenent.
Currently, the execution engine can execute simple specifications, aiodis/aug-ins for common
backgrounds (e.g., numbers, sets, strings, booleans) are availafie.spkcialized plug-ins have also
been developed, including a plug-in adding support for real time andoometerfacing ASM specifica-
tions with Java class libraries (including the Java standard library with alldiiétifss). TheCoreASM
GUI is instead still in early development. We are considering re-designin§jretesUl, which was
implemented as a stand-alone application, and produce instead a plug-ia Exlithse integrated devel-
opment environment [24].

Acknowledgements

Our sincere appreciation to Egord®er for many inspiring discussions and persistent encouragement
on theCoreASM project, as well as his valuable feedback on an early draft versionsopéper. We

also thank Mashaal Memon for his contribution to and his active involvemethieidevelopment and
implementation of th&€oreASM Engine, and the anonymous reviewers for their precious improvement
suggestions.

References

[1] Anlauff, M.: XASM — An Extensible, Component-Based Attt State Machines Languagkbstract State
Machines: Theory and Applicatiorf¥. Gurevich and P. Kutter and M. Odersky and L. Thiele, E#9]2,
Springer-Verlag, 2000.

[2] Anlauff, M., Kutter, P.: eXtensible Abstract State MachineXASM open source projecthttp://www.
Xasm.org.

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine 101

[3] Beckert, B., Posegga, J.: leanEA: A Lean Evolving AlgeGompiler, Proceedings of the Annual Conference
of the European Association for Computer Science Logic (€9L(H. K. Blning, Ed.), 1092, Springer,
1996.

[4] Beierle, C., Birger, E., Durdanovic, I., @kser, U., Riccobene, E.: Refining Abstract Machine Spatibics
of the Steam Boiler Control to Well Documented Executablel€o in: Formal Methods for Industrial
Applications. Specifying and Programming the Steam-BGitmtrol (J.-R. Abrial, E. Brger, H. Langmaack,
Eds.), number 1165 in LNCS, Springer, 1996, 62—78.

[5] Blass, A., Gurevich, Y.: Abstract State Machines CaptBarallel Algorithms ACM Transactions on Com-
putation Logi¢ 4(4), 2003, 578—651.

[6] Borger, E.: A Logical Operational Semantics for Full ProlBgrt I: Selection Core and Contr&@SL’'89. 3rd
Workshop on Computer Science Lo¢fc Borger, H. Kleine RBining, M. M. Richter, W. Sctinfeld, Eds.),
440, Springer, 1990.

[7] Borger, E.: A Logical Operational Semantics of Full PrologttRI: Built-in Predicates for Database Manip-
ulation, in: Mathematical Foundations of Computer ScielfBe Rovan, Ed.), vol. 452 ofNCS Springer,
1990, 1-14.

[8] Borger, E.: The Origins and the Development of the ASM MethardHigh Level System Design and Analy-
sis, Journal of Universal Computer Scien@€l1), 2002, 2—74.

[9] Borger, E.: The ASM Ground Model Method as a Foundation foruReguents Engineeringyerification:
Theory and Practice2003.

[10] Borger, E.: The ASM Refinement MethoBormal Aspects of Computing003, 237-257.

[11] Borger, E., Fruja, N. G., Gervasi, V., 8Kk, R. F.: A high-level modular definition of the semanti¢<Ce,
Theoretical Computer Sciencg36(2/3), May 2005, 235-284.

[12] Borger, E., Ghsser, U., Miller, W.: The Semantics of Behavioral VHDL'93 DescriptiorEURO-DAC’94.
European Design Automation Conference with EURO-VHDLIBEE CS Press, Los Alamitos, California,
1994.

[13] Borger, E., Ghsser, U., Miller, W.: Formal Definition of an Abstract VHDL'93 Simulatby EA-Machines,
in: Formal Semantics for VHDIC. Delgado Kloos, P. T. Breuer, Eds.), Kluwer Academic iligrs, 1995,
107-139.

[14] Borger, E., Rppinghaus, P., Schmid, J.: Report on a Practical Apptinadf ASMs in Software Design,
Abstract State Machines: Theory and Applicati¢visGurevich and P. Kutter and M. Odersky and L. Thiele,
Ed.), 1912, Springer-Verlag, 2000.

[15] Borger, E., Riccobene, E., Schmid, J.: Capturing Requirésnen Abstract State Machines: The Light
Control Case StudyjJournal of Universal Computer Scien@&7), 2000, 597-620.

[16] Borger, E., Sirk, R.: Abstract State Machines: A Method for High-Level Systemigbeand Analysis
Springer-Verlag, 2003.

[17] Castillo, G. D., Gasser, U.: Simulation and Validation of High-level Abstr&tate Machine Specifications,
Modelling and Simulation: A Tool for the Next Millenium — Brof the 13th European Simulation Multicon-
ference(H. Szczerbicka, Ed.), 2, June 1999.

[18] Del Castillo, G.: Towards Comprehensive Tool SupportAbstract State Machineépplied Formal Meth-
ods — FM-Trends 98D. Hutter, W. Stephan, P. Traverso, M. Ullmann, Eds.), 1@Hringer-Verlag, 1999.

[19] Del Castillo, G., Durdano¥i |., Glasser, U.: An Evolving Algebra Abstract Machine, Procegsliof the
Annual Conference of the European Association for Compbitéence Logic (CSL'95) (H. K. Bning, Ed.),
1092, Springer, 1996.

102

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine

Del Castillo, G., Ghsser, U.: Computer-Aided Analysis and Validation of Hegeneous System Specifica-
tions, Computer Aided Systems Theory: Proceedings of the 7tmimtienal Workshop on Computer Aided
Systems Theory (EUROCAST'YB) Pichler, R. Moreno-Diaz, P. Kopacek, Eds.), 1798, Sin2000.

Del Castillo, G., Winter, K.: Model Checking Supportrfthe ASM High-Level Language Proceedings
of the 6th International Conference TACAS 280 Graf, M. Schwartzbach, Eds.), 1785, Springer-Verlag,
2000.

Diesen, D.: Specifying Algorithms Using Evolving Algebra. Impleméntaof Functional Programming
LanguagesDr. scient. degree thesis, Dept. of Informatics, Uniugrsf Oslo, Norway, March 1995.

E. Borger and W. Schulte: A Practical Method for Specificatiod &malysis of Exception Handling: A
Java/JVM Case StudyEEE Transactions on Software Engineeri@g(10), October 2000, 872—887.

Eclipse Foundation: Eclipse.org web site, Last visitéay 2005http: //wuw.eclipse.org/.

Eschbach, R., Glser, U., Gotzhein, R., Prinz, A.: On the Formal Semanfi&Di.-2000: A Compilation
Approach Based on an Abstract SDL Machin@pstract State Machines: Theory and ApplicatiqiYs
Gurevich and P. Kutter and M. Odersky and L. Thiele, Ed.), 2l S8pringer-Verlag, 2000.

Farahbod, R., Gervasi, V., &ser, U.Design and Specification of the CoreASM Execution Endieehnical
Report SFU-CMPT-TR-2005-02, Simon Fraser University,realy 2005.

Farahbod, R., Gervasi, V., Bdser, U.Design and Specification of the CoreASM Execution Endieehnical
report, Simon Fraser University, To be published in Oct@¥)5, Revised version of SFU-CMPT-TR-2005-
02, February 2005.

Farahbod, R., Glsser, U., Vajihollahi, M.: Specification and Validationtbé Business Process Execution
Language for Web Serviceg\bstract State Machines 2004. Advances In Theory And Reaclilth Inter-
national Workshop (ASM 2004W. Zimmermann, B. Thalheim, Eds.), Springer-Verlag, Gamgy March
2004.

Farahbod, R., Glsser, U., Vajihollahi, M.Abstract Operational Semantics of the Business ProcessUfira
Language for Web ServiceSechnical Report SFU-CMPT-TR-2005-04, Simon Fraser Ensity, Feb. 2005,
Revised version of SFU-CMPT-TR-2004-03, April 2004.

Farahbod, R., Gisser, U., Vajihollahi, M.: A Formal Semantics for the Besis Process Execution Language
for Web ServicesWeb Services and Model-Driven Enterprise Information @ys{S. Bevinakoppa, et al.,
Eds.), INSTICC Press, Portugal, May 2005.

Farahbod, R., et alThe CoreASM Projecthttp://www.coreasm.org.

Gargantini, A., Riccobene, E., Rinzivillo, S.: Usingi8 to Generate Tests from ASM Specifications)-
stract State Machines 200Springer, 2003.

Glasser, U., Gotzhein, R., Prinz, A.: The formal semanticsf-8000: status and perspectiveSpmput.
Networks42(3), 2003, 343—-358.

Glasser, U., Gu, Q.-P.: Formal Description and Analysis of stribiuted Location Service for Mobile Ad
Hoc Networks,Theoretical Computer Scienc&36 May 2005, 285-309.

Glasser, U., Gurevich, Y., Veanes, M.: Abstract Communiceliodel for Distributed System$EEE Trans.
on Soft. Eng.30(7), July 2004, 458-472.

Gurevich, Y.: Evolving Algebras 1993: Lipari Guide,: iBpecification and Validation Method&. Borger,
Ed.), Oxford University Press, 1995, 9-36.

Gurevich, Y.: Sequential Abstract State Machines GapSequential AlgorithmsACM Transactions on
Computational Logic1(1), July 2000, 77-111.

R. Farahbod et al. CoreASM: An Extensible ASM Execution Engine 103

[38] Gurevich, Y., Huggins, J.: Evolving Algebras and RPalrkvaluation, IFIP 13th World Computer Congress
(B. Pehrson, I. Simon, Eds.), I: Technology/Foundatiorise\der, Amsterdam, the Netherlands, 1994.

[39] Gurevich, Y., Tillmann, N.: Partial Updates: Expldmt, Journal of Universal Computer Scienc&11),
2001, 917-951.

[40] Gurevich, Y., Tillmann, N.: Partial UpdatesJournal of Theoretical Computer Scien@&362-3), 2005,
311-342.

[41] Huckle, T.:Collection of Software BugsTechnical report, Technical University Munich, 2004, tLeasited
Sep. 2005http://wwwb.in.tum.de/~huckle/bugse.html.

[42] Huggins, J.An Offline Partial Evaluator for Evolving Algebra3echnical Report CSE-TR-229-95, Univer-
sity of Michigan, 1995.

[43] ITU-T Recommendation Z.100 Annex F (11/0@DL Formal Semantics Definitipmnternational Telecom-
munication Union, 2001.

[44] Kappel, A. M.: Executable Specifications Based on Dyitafigebras, in:Logic Programming and Au-
tomated Reasonin@\. Voronkov, Ed.), vol. 698 of_ecture Notes in Atrtificial Intelligen¢esSpringer, 1993,
229-240.

[45] Memon, M. A.: Specification Language Design Concepts: Aggregation anersibility in CoreASMMas-
ter Thesis, Simon Fraser University, Burnaby, Canada, 2006.

[46] Microsoft FSE GroupThe Abstract State Machine Languadest visited June 2003ttp://research.
microsoft.com/fse/asml/.

[47] Muller, W., Ruf, J., Rosenstiel, W.: An ASM Based SystemC 3ation Semantics.SystemC - Methodolo-
gies and ApplicationéW. Muller, J. Ruf, W. Rosenstiel, Eds.), Kluwer Academic Pui#is, June 2003.

[48] R. Eschbach and U. @ser and R. Gotzhein and M. voidwis and A. Prinz: Formal Definition of SDL-
2000: Compiling and Running SDL Specifications as ASM Modétsirnal of Universal Computer Science
7(11), 2001, 1024-1049.

[49] Schmid, J.: Executing ASM Specitications with AsmGoferLast visited Sep. 2005yww.tydo.de/
AsmGofer/.

[50] Schmid, J.: Compiling Abstract State Machines to C+Jgurnal of Universal Computer Sciencg11),
2001, 1068-1087.

[61] stark, R., Schmid, J., &ger, E.:Java and the Java Virtual Machine: Definition, Verificatiofglidation,
Springer-Verlag, 2001.

