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Abstract

We propose a structured mathematical definition of the semantics of C# programs to pro-
vide a platform-independent view of the language for the C# programmer, which can also be
used for a precise analysis of the ECMA [7] standard of the language. The definition takes
care to reflect directly and faithfully – as much as possible without becoming inconsistent or
incomplete – the descriptions in the C# standard to become comparable with the correspond-
ing models for Java in [15] and to provide for implementors the possibility to check their basic
design decisions against an accurate high-level model. In particular we will highlight some of
the major differences between the ECMA standard and the implementation of the language
in .NET.

1 Introduction

In this work the method developed in [15] for a rigorous definition and analysis of Java and its
implementation on the Java Virtual Machine (JVM) is applied to formalize the semantics of C#.
We provide a succinct, purely mathematical (thus platform-independent) model, which reflects as
much as possible the intuitions and design decisions underlying the language as described in the
ECMA standard [7] and in [10] and clarifies a certain number of semantically relevant issues which
are not handled by that standard. We also consulted the Microsoft Press books [1, 11, 12]. A series
of bugs and gaps in the ECMA standard for C# and in .NET and incoherences between the two
were detected during our attempt to build a consistent and complete yet abstract model for the
language. To support the experimentation with the model a project has been started to refine the
model developed here to .NET-executable AsmL code [8], similarly to the AsmGofer refinement
developed by Joachim Schmid [13, 14] for the Java and JVM models in [15].

To provide the programmer with a transparent view of the intricate interaction of various
language features which depend on the run-time environment, our model comes as an Abstract
State Machine (ASM) whose notion of run provides a transparent way to reflect those run-time-
related features, which are encountered upon executing a given C# program. The use of ASMs1

also allows us to specify the static and the dynamic parts of the semantics separately. The dynamic
semantics of the language is captured operationally by ASM rules which describe the run-time effect
of program execution on the abstract state of the program, the static semantics comes as a mainly
declarative description of the relevant syntactical and compile-time checked language features (like
typing rules, rules for definite assignment and reachability, name resolution, method resolution
for overloaded methods, etc.) and of pre-processing directives (like #define, #undef, #if, #else,
#endif, etc.), which are mostly reflected in the annotated abstract syntax tree our model starts
from.

To keep the size of the models small and to facilitate the understanding of clusters of language
constructs in terms of local state transformations, similarly to the decomposition of Java and
the JVM in [15] we structure the C# programming language into layered modules of orthogonal
language features, namely the imperative core (related to sequential control by while programs,
built from statements and expressions over the simple types of C#), classes (realizing procedural
abstraction with class initialization and global (module) variables), object-orientation (with class
instances, instance methods, inheritance), exception handling, delegates together with events (in-
cluding for convenience here also properties, indexers, attributes), concurrency, unsafe code with

1more precisely the classification of abstract states into a static and a dynamic part
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pointer arithmetic. This yields a sequence of sublanguages C#I , C#C , C#O, C#E , C#D, C#T ,
C#U which altogether describe the entire language C#. Each language in the sequence extends its
predecessor and for each one we build a submachine which is a conservative (purely incremental)
extension of its predecessor. The model for the entire language C# is a parallel composition of all
submachines.

To keep the definition of the models succinct, we avoid tedious and routine repetitions concern-
ing language constructs which can be reduced in well-known ways to the core constructs in our
models. Since the handling of truly concurrent threads, not limited to interleaving or similar simple
scheduling techniques, is closely related to the underlying memory model whose description goes
much beyond this paper, the submodel C#T and its further analysis is postponed to a forthcoming
separate paper [6].

Since by and large one can correctly understand an ASM as pseudo-code operating over abstract
data, we skip a detailed definition of ASMs which is available in textbook form in Chapter 2 of
the AsmBook [5]. The basic framework of the model is introduced together with the model for the
imperative kernel C#I of the language which is then refined by successive extensions to the full
model. Since our paper is not a tutorial or manual on C#, we restrict our explanations here to
features a reader will appreciate who is already knowledgeable about the basic concepts of object-
oriented programming. In a technical report [3] also the remaining details which are skipped in
this paper are spelt out completely, together with further explanations and examples.

2 The imperative core C#I

In this section we define the model for C#I , which defines the basic machinery of the ASM model
for C# and describes the semantics of the sequential imperative core of C# with to be executed
statements (appearing in method bodies) and to be evaluated expressions (appearing in state-
ments) built using predefined operators over simple types. The computations of this interpreter
are supposed to start with an arbitrary but fixed C# program. We separate syntax and compile-
time matters from run-time issues by assuming that the program is given as an annotated abstract
syntax tree resulting from parsing and elaboration, trying to achieve model simplicity also by
assuming some useful syntactical simplifications which will be mentioned as we build the model.
Before defining the transition rules for the dynamic semantics of C#I , we formulate what has to
be said about the static semantics.

2.1 Static semantics of C#I

We view the grammar in Fig. 1, which defines expressions and statements of the sublanguage C#I ,
as defining also the corresponding ASM domains Exp and Stm. To avoid lengthy repetitions we
include here already the distinctions between checked and unchecked expressions and blocks, though
they are semantically irrelevant in the submodel C#I and start to play a role only with C#E . The
set Vexp of variable expressions (lvalues) consists in this model of the local variables only and
will be refined below. Sexp denotes the set of statement expressions than can be used on the
top-level like an assignment to a variable expression using ‘=’ or an assignment operator from
the set Aop or ‘++’ or ‘--’. Lit denotes the set of literals, similarly for Type, Lab and the set
Cexp of constant expressions whose value is known at compile time. When referring to the set
of sequences of elements from a set Item we write Items, e.g. Sexps for the set of sequences of
statement expressions. We usually write lower case letters e to denote elements of a set E , e.g. lit
for elements of Lit.

The descriptions of implicit numeric conversions in [7, §13.1] and of binary numeric promotions
in [7, §14.2.6] can be succinctly formulated as follows, using the type graph in Fig. 2 for the simple
types of C#, which are the types of C#I (for a classification of the types of C# see Fig. 4).

Definition 2.2 (Implicit conversion [7, §13.1]) There is an implicit numeric conversion from
type A to B (written A ≺ B) iff there exists a finite, non-empty path of arrows from A to B in the
simple type graph in Fig. 2. We write A � B for A ≺ B or A = B . A type C is called an upper
bound of A and B iff A � C and B � C . A type C is the least upper bound of A and B iff

C is an upper bound of A and B and
C � D for each upper bound D of A and B .
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Exp ::= Lit | Vexp | Uop Exp | Exp Bop Exp | Exp ‘?’ Exp ‘:’ Exp | ‘(’ Type ‘)’ Exp
| Sexp | ‘(’ Exp ‘)’ | ‘checked’ ‘(’ Exp ‘)’ | ‘unchecked’ ‘(’ Exp ‘)’

Vexp ::= Loc

Sexp ::= Vexp ‘=’ Exp | Vexp Aop Exp | Vexp ‘++’ | Vexp ‘--’

Uop ::= ‘+’ | ‘-’ | ‘!’ | ‘~’

Bop ::= ‘*’ | ‘/’ | ‘%’ | ‘+’ | ‘-’ | ‘<<’ | ‘>>’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’ | ‘==’ | ‘!=’ | ‘&’ | ‘^’ | ‘|’

Aop ::= ‘*=’ | ‘/=’ | ‘%=’ | ‘+=’ | ‘-=’ | ‘<<=’ | ‘>>=’ | ‘&=’ | ‘^=’ | ‘|=’

Stm ::= ‘;’ | Sexp ‘;’ | ‘break’ ‘;’ | ‘continue’ ‘;’ | ‘goto’ Lab ‘;’
| ‘if’ ‘(’ Exp ‘)’ Stm ‘else’ Stm
| ‘while’ ‘(’ Exp ‘)’ Stm | ‘do’ Stm ‘while’ ‘(’ Exp ‘)’
| ‘for’ ‘(’ [Sexps] ‘;’ [Exp] ‘;’ [Sexps] ‘)’ Stm
| ‘switch’ ‘(’ Exp ‘)’ ‘{’ {Case {Case} Bstm {Bstm}} ‘}’
| ‘goto’ ‘case’ Cexp ‘;’ | ‘goto’ ‘default’ ‘;’
| ‘checked’ Block | ‘unchecked’ Block | Block

Sexps ::= Sexp {‘,’ Sexp}

Case ::= ‘case’ Cexp ‘:’ | ‘default’ ‘:’

Block ::= ‘{’ {Bstm} ‘}’

Bstm ::= Type Loc ‘;’ | ‘const’ Type Loc ‘=’ Cexp ‘;’ | Lab ‘:’ Stm | Stm

Figure 1: Grammar of expressions and statements in C#I .

We write sup(A,B) for the least upper bound of A and B if it exists.

We assume all the type constraints (on the operand and result values) and precedence conven-
tions listed in [7] for the predefined (arithmetical, relational, bit and boolean logical) operators
and the expression types. We assume that each expression node exp in the abstract syntax tree is
annotated with its compile-time type type(exp).

About type conversions at compile-time we assume that type casts are inserted in the syntax
tree if necessary. For example, if a binary numeric operator bop is applied to arguments in e1 bop e2,
then the least upper bound T of the types of e1 and e2 must exist and the expression is transformed
into (T)e1 bop (T)e2.

Definition 2.3 (Binary numeric promotion [7, §14.2.6]) Binary numeric promotion consists
of applying the following rules:

If the least upper bound of A and B exists, then
– if sup(A,B) � int, then A and B are converted to int,
– otherwise, A and B are converted to sup(A,B).

If the least upper bound of A and B does not exist, then a compile-time error occurs.

We also assume the syntactical constraints for statements listed in [7], e.g. the following ones
for blocks (where the scope of a local variable (local constant) is defined as the block in which it
is declared, the scope of a label is the block in which the label is declared, and a local variable is
identified by its name and the position of its declaration, so that in particular local variables with
the same name in disjoint blocks are considered as different):

It is not allowed to refer to a local variable (local constant) in a textual position that precedes
its declaration.
It is not allowed to declare another local variable or local constant with the same name in
the scope of a local variable (local constant).
It is not allowed for two labels with the same name to have overlapping scopes.
A goto Lab must be in the scope of a label with name Lab.
Expressions in constant declarations are evaluated at compile-time.
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Figure 2: The simple types of C#I .

To simplify the exposition of our model we assume some standard syntactical reductions as indi-
cated in the following table:

exp1 && exp2 exp1 ? exp2 : false
exp1 || exp2 exp1 ? true : exp2

if (exp) stm if (exp) stm else ;
++vexp vexp += 1
--vexp vexp -= 1
int x = 1, y, z = x * 2; int x; x = 1; int y; int z; z = x * 2;
for (type loc = exp; test; step) stm { type loc; for (loc = exp; test; step) stm }

During the static program analysis where the compiler has to verify that the given program is
well-typed, predicates reachable and normal with the following intended meaning are computed for
statements, using the type information contained in the annotated syntax tree as result of parsing
and elaboration:

reachable(stm) ⇐⇒ stm can be reached
normal(stm) ⇐⇒ stm can terminate normally ⇐⇒ the end point of stm can be reached

For the correctness of our model we have to guarantee the following two program properties: a)
during the program execution, only reachable positions are reached, b) normal termination happens
only in normal positions. These two properties, which are undecidable, are guaranteed by checking
two sufficient conditions via so-called reachability rules, which can be inductively defined for C#I
as follows (similarly for do, for, switch). For constant boolean expressions in conditional and
while statements we assume that they are replaced in the abstract syntax tree by true or false.

s is a function body =⇒ reachable(s)
reachable(;) =⇒ normal(;)
reachable(e;) =⇒ normal(e;)
reachable({}) =⇒ normal({})
reachable({s . . . }) =⇒ reachable(s)
normal(si) in { . . . si si+1 . . . } =⇒ reachable(si+1)
reachable(goto l;) in { . . . l:s . . . } =⇒ reachable(l:s)
normal(s) =⇒ normal({ . . . s})
reachable(if (e) s1 else s2) and e 6= false =⇒ reachable(s1)
reachable(if (e) s1 else s2) and e 6= true =⇒ reachable(s2)
normal(s1) or normal(s2) =⇒ normal(if (e) s1 else s2)
reachable(while (e) s) and e 6= false =⇒ reachable(s)
reachable(while (e) s) and e 6= true =⇒ normal(while (e) s)
reachable(break;) in s =⇒ normal(while (e) s)

Unreachable statements indicate programming errors and therefore generate compile-time warn-
ings. Function bodies that can terminate normally generated compile-time errors, since at run-time
execution could fall of the bottom of the code array.

We also have to reflect in the model the type safety of well-typed C# programs, i.e. that a)
variables at run-time contain values that are compatible with the declared types, and b) expressions
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}

   int i = 7;

IL_0000: ldc.i4.7
IL_0001: stloc.0

C# Compiler

definite
assignment

accepted
by the
IL Verifier

type safe

(undecidable)
programs

void Main() {

C# Programs

Intermediate Language (IL)

  ...

Figure 3: Definite assignment and IL verification.

are evaluated at run-time to values that are compatible with their compile-time types. The desired
consequence of the type safety of a program is that at run-time its variables will never contain
undefined values, that there are no dangling references, that the program cannot corrupt the
memory, and that the dynamic method lookup always succeeds. Using the notation explained in
the next section such invariants can be made precise and be proven to hold under appropriate
assumptions2.

To guarantee the type safety, which is an undecidable program property, the compiler checks
a sufficient condition computing predicates before, after (for occurrences of statements and ex-
pressions in a function body) and true, false (for the two possible evaluation results of boolean
expressions), which implement the so-called definite assignment rules to assure that a variable is
definitely assigned before its value is used. The situation is illustrated in Fig. 3. Unfortunately
the picture does not reflect the reality. For unknown reasons Microsoft has decided that in verified
IL (intermediate language) code local variables are initialized by the run-time system with zero
values. Hence, also source code programs that do not fulfill the definite assignment constraints are
accepted by the IL verifier.

A variable occurring in a position is called definitely assigned there, if on every execution path
leading to that position (in the abstract syntax tree) a value is assigned to the variable. Thus the
intended meaning of the above predicates is as follows, where by “elaboration” of an item we mean
“execution”, if item is a statement, and “evaluation” if it is an expression.

x ∈ before(item) ⇐⇒ x is definitely assigned before the elaboration of item
x ∈ after(item) ⇐⇒ x is definitely assigned after normal elaboration of item
x ∈ true(exp) ⇐⇒ x is definitely assigned after exp evaluates to true
x ∈ false(exp) ⇐⇒ x is definitely assigned after exp evaluates to false

We make the definite assignment rules of [7, §12.3.3] precise by the following constraints, where
vars(stm) = {x | stm is in the scope of x}.

If s is a function body, then before(s) = ∅
after(;) = before(;)
before(exp) = before(exp;)
after(exp;) = after(exp)

after(break;) = vars(break;)
after(continue;) = vars(continue;)
after(goto l;) = vars(goto l;)

For blocks stm = {s1 . . . sn} the constraints are as follows:
2For example the following invariants can be proved to hold at run-time: a) before(pos) ⊆ Defined where

Defined = {x ∈ Loc | mem(locals(x)) 6= Undef }, b) after(pos) ⊆ Defined if values(pos) = Norm or values(pos) ∈
Value. Specifically for boolean expressions holds true(pos) ⊆ Defined if values(pos) = True, the same for false.
Such proofs can be carried out using the pattern developed in [15, Ch.8] for proving that Java is type safe.
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before(s1) = before(stm)
after(stm) = after(sn)

before(si+1) = after(si) ∩ goto(si+1) where
goto(l:s) =

T
{before(goto l;) | goto l is

reachable in stm} and goto(s) = vars(s) if s
is not a labeled statement

For stm = if (e) s1 else s2 one has to require:
before(e) = before(stm)
before(s1) = true(e)

before(s2) = false(e)
after(stm) = after(s1) ∩ after(s2)

Constraints for while statements stm = while (e) s:
before(e) = before(stm)
before(s) = true(e)

after(stm) = false(e) ∩ break(s) where
break(s) =

T
{before(break;) | break;

reachable in s}

For boolean expressions we have the following general constraints.
If exp ∈ {true, false, !e, e1 && e2, e1 || e2, e0 ? e1 : e2}, then

after(exp) = true(exp) ∩ false(exp)

otherwise
true(exp) = after(exp) false(exp) = after(exp)

In addition for specific boolean expressions, the following specific constraints are imposed for the
eager (‘short-circuit’) evaluation of Boolean expressions.

true(true) = before(true)
false(true) = vars(true)

true(false) = vars(true)
false(false) = before(false)

For negations exp = !e:
before(e) = before(exp)
true(exp) = false(e)

false(exp) = true(e)

For conjunctions exp = (e1 && e2):
before(e1) = before(exp)
before(e2) = true(e1)

true(exp) = true(e2)
false(exp) = false(e1) ∩ false(e2)

For disjunctions exp = (e1 || e2):
before(e1) = before(exp)
before(e2) = false(e1)

true(exp) = true(e1) ∩ true(e2)
false(exp) = false(e2)

If exp = (e0 ? e1 : e2), then
before(e0) = before(exp)
before(e1) = true(e0)
before(e2) = false(e0)

true(exp) = true(e1) ∩ true(e2)
false(exp) = false(e1) ∩ false(e2)

For general expressions the constraints for definite assignment are as follows.
loc ∈ before(loc)
after(loc) = before(loc)

after(lit) = before(lit)

For simple assignments exp = (loc = e) we have
before(e) = before(exp) after(exp) = after(e) ∪ {loc}

For compound assignments exp = (loc op= e) we have
loc ∈ before(exp)
before(e) = before(exp)

after(exp) = after(e)

If exp = (e0 ? e1 : e2), then
before(e0) = before(exp)
before(e1) = true(e0)

before(e2) = false(e0)
after(exp) = after(e1) ∩ after(e2)

In all other cases, if exp is an expression with direct subexpressions e1, e2, . . . , en , then the left-to-
right evaluation scheme yields
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before(e1) = before(exp)
before(ei+1) = after(ei) for i ∈ [1 . .n − 1]

after(exp) = after(en)

Due to the goto statement the above constraints specify the sets of variables that have to be
considered as definitely assigned not in a unique way. For blocks without goto statements, however,
it can be shown that the before set determines the after set in a unique way.

2.4 Transition rules for C#I

The dynamic semantics for C#I describes the effect of statement execution and expression eval-
uation upon the program state, so that the transition rule for C#I (the same for its extensions)
has the form

ExecCsharpI ≡
ExecCsharpExpI

ExecCsharpStmI

The first subrule defines one execution step in the evaluation of expressions; the second subrule
defines one step in the execution of statements.

To make the further model refinements possible via purely incremental extensions, our definition
proceeds by walking through the abstract syntax tree and computing at each node the effect
of the program construct attached to the node. We formalize the walk by a cursor I, whose
position in the tree – represented by a dynamic function pos:Pos – is updated using static tree
functions, leading from a node in the tree down to its first child, from there to the next brother
or up to the parent node (if any), as illustrated by the following self-explanatory example. A
function label :Pos → Label decorates nodes with the information which identifies the grammar
rule associated to the node. In the example the label of the root node is If .

Ift
�

�
�

�	

6

@
@

@Ifirst
up

up

t t t
exp stm1 stm2

- -next next

if (exp) stm1 else stm2

As a side effect the values of local variables in the memory are updated using two dynamic
function locals:Loc → Adr and mem:Adr → SimpleValue ∪ {Undef } to assign to local variables
memory addresses where the values are stored. Since in C#I the values are of simple types,
the equation Value = SimpleValue ∪ Adr holds, which will be refined in the extended models
to include also references and structs. The uniquely identified local variables are modeled by
stipulating Loc = Identifier × Pos, where Pos is the set of positions in the abstract syntax tree.

The indirection through memory addresses is not really needed in C#I . In C#I one could
assign values directly to local variables without storing them in an abstract memory. The addresses,
however, are needed later for call-by-reference with ref and out parameters (one of the major
differences between C# and Java from the modelling point of view).

Statements can terminate normally or abruptly, where in C#I the reasons of abruption are
from the set Abr = Break | Continue | Goto(Lab), to be refined for the extended models. We use
an auxiliary dynamic function values:Pos → Result to store intermediate evaluation results from
the set Result = SimpleValue ∪Abr ∪ {Undef ,Norm}. For the initial state we assume

mem(i) = Undef for every i ∈ Adr
pos = root position of the abstract syntax tree
locals(x ) ∈ Adr for every variable x 3

It thus remains to define the two submachines for expression evaluation and statement exe-
cution. This is done in a modular fashion, grouping behaviorally similar instructions into one
parameterized instruction4. For a succinct formulation we use a macro context(pos) to describe
the context of the currently to be handled expression or statement or intermediate result, which

3This comes up to assume that the compiler chooses an address for each variable.
4The specializations can be regained instruction-wise by mere parameter expansion, a form of refinement that is

easily proved to be correct.

7



has to be matched against the syntactically possible cases (in the textual order of the rule) to
select the appropriate computation step. If the subtree at the position pos is already evaluated
and pos carries its result in values, then context(pos) is the parent note of pos together with its
children where pos is marked with the cursor (I); otherwise, context(pos) consists of the node at
pos together with its children. As intermediate values at a position p the cursor is at or is passing
to, the computation may yield directly a simple value; at AddressPositions as defined below it may
yield an address; but it may also yield a memValue which has to be retrieved indirectly via the
given address (where for C#I the memory value of a given type t at a given address adr is defined
by memValue(adr , t) = mem(adr)). This is described by the following two macros:

Yield(val , p) ≡
values(p) := val
pos := p

YieldIndirect(adr , p) ≡
if AddressPos(p) then Yield(adr , p) else Yield(memValue(adr , type(p)), p)

We will use the macros in the two forms Yield(val) ≡ Yield(val , pos) and YieldUp(val) ≡
Yield(val , up(pos)), similarly for YieldIndirect(adr) and YieldUpIndirect(adr).

We are now ready to define the machine ExecCsharpExpI in a compositional way, namely
proceeding expression-wise: for each syntactical form of expressions there is a set of rules covering
each intermediate phase of their evaluation. The machine passes control from unevaluated expres-
sions to the appropriate subexpressions until an atom (a literal or a local variable) is reached. It
can continue its computation only as long as no operator exception occurs, as a consequence it
does not distinguish between checked and unchecked expression evaluation – the extension by rules
to handle exceptions is defined in the model extension C#E . The macro WriteMem(adr , t , val)
denotes here mem(adr) := val ; it will be refined in the model for C#O.

ExecCsharpExpI ≡ match context(pos)
lit → Yield(ValueOfLiteral(lit))
loc → YieldIndirect(locals(loc))
uop exp → pos := exp
uop Ival → if ¬UopException(uop, val) then YieldUp(Apply(uop, val))
exp1 bop exp2 → pos := exp1
Ival bop exp → pos := exp
val1 bop Ival2 → if ¬BopException(bop, val1, val2) then YieldUp(Apply(bop, val1, val2))
exp0 ? exp1 : exp2 → pos := exp0
Ival ? exp1 : exp2 → if val then pos := exp1 else pos := exp2

True ? Ival : exp → YieldUp(val)
False ? exp : Ival → YieldUp(val)
loc = exp → pos := exp
loc = Ival → {WriteMem(locals(loc), type(loc), val), YieldUp(val)}
(type) exp → pos := exp
(type) Ival → if ¬UopException(type, val) then YieldUp(Convert(type, val))
vexp op= exp → pos := vexp
I
adr op= exp → pos := exp

adr op=
I
val → let t = type(up(pos)) and v = memValue(adr , t) in

if ¬BopException(op, v , val) then
let w = Apply(op, v , val) and result = Convert(t ,w) in
{WriteMem(adr , t , result), YieldUp(result)}

vexp op → pos := vexp // where op ∈ {++, --}
I
adr op → let old = memValue(adr , type(pos)) in

if ¬UopException(op, old) then
{WriteMem(adr , type(up(pos)),Apply(op, old)), YieldUp(old)}

checked(exp) → pos := exp
checked(Ival) → YieldUp(val)
unchecked(exp) → pos := exp
unchecked(Ival) → YieldUp(val)
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Being in a context where an address and not a value is required can be defined as follows:

AddressPos(α) ⇐⇒ FirstChild(α) ∧ (label(up(α)) ∈ {++, --} ∨ label(up(α)) ∈ Aop)
where FirstChild(α) ⇐⇒ first(up(α)) = α

Similarly for being in a checked context which is used to define whether operators throw an overflow
exception (in which case a rule will be added in the model for C#E). The general rule is that
operators for the type decimal always throw overflow exceptions whereas operators for integral
types only throw overflow exceptions in a checked context except for the division by zero. By
default every position is unchecked, unless explicitly declared otherwise.

Checked(α) ⇐⇒ label(α) = Checked ∨
(label(α) 6= Unchecked ∧ up(α) 6= Undef ∧ Checked(up(α)))

UopException(uop, val) ⇐⇒ Checked(pos) ∧Overflow(uop, val)
BopException(bop, val1, val2) ⇐⇒

DivisonByZero(bop, val2) ∨DecimalOverflow(bop, val1, val2) ∨
(Checked(pos) ∧Overflow(bop, val1, val2))

Similarly, the machine ExecCsharpStmI is defined below statement-wise. It transfers control
from structured statements to the appropriate substatements, until the current statement has
been computed normally or abrupts the computation. Abruptions trigger the control to propagate
through all the enclosing statements up to the target labeled statement. The concept of propagation
is defined below in such a way that in the refined models it is easily extended to abruptions due to
return from procedures or to exceptions. In case of a new execution of the body of a while statement,
the previously computed intermediate results have to be cleared. For the sake of brevity we skip
the analogous transition rules for statements do, for, switch, goto case, goto default.

ExecCsharpStmI ≡ match context(pos)
;→ Yield(Norm)
exp; → pos := exp
Ival;→ YieldUp(Norm)

break; → Yield(Break)
continue;→ Yield(Continue)
goto lab; → Yield(Goto(lab))

if (exp) stm1 else stm2 → pos := exp
if (Ival) stm1 else stm2 → if val then pos := stm1 else pos := stm2

if (True) INorm else stm → YieldUp(Norm)
if (False) stm else INorm → YieldUp(Norm)

while (exp) stm → pos := exp
while (Ival) stm → if val then pos := stm else YieldUp(Norm)
while (True) INorm → {pos := up(pos), ClearValues(up(pos))}
while (True) IBreak → YieldUp(Norm)
while (True) IContinue → {pos := up(pos), ClearValues(up(pos))}
while (True) Iabr → YieldUp(abr)
type loc;→ Yield(Norm)
lab: stm → pos := stm
lab: INorm → YieldUp(Norm)

checked block → pos := block
checked INorm → YieldUp(Norm)
unchecked block → pos := block
unchecked INorm → YieldUp(Norm)
. . . Iabr . . . → if up(pos) 6= Undef ∧ PropagatesAbr(up(pos)) then YieldUp(abr)
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{ } → Yield(Norm)
{stm . . . } → pos := stm
{ . . . INorm} → YieldUp(Norm)
{ . . . INorm stm . . . }→ pos := stm
{ . . . IGoto(l) . . . } → let α = GotoTarget(first(up(pos)), l)

if α 6= Undef then {pos := α, ClearValues(up(pos))}
else YieldUp(Goto(l))

{ . . . Iabr . . . } → YieldUp(abr)

In C#I abruptions are propagated upwards except at the following statements:

PropagatesAbr(α) ⇐⇒ label(α) /∈ {Block ,While,Do,For ,Switch}
To compute the target of a label in a list of block statements we define:

GotoTarget(α, l) =
if label(α) = Lab(l) then α
elseif next(α) = Undef then Undef
else GotoTarget(next(α), l)

The auxiliary macro ClearValues(α) to clear all values in the subtree at position α can be
defined by recursion as follows, proceeding from top to bottom and from left to right5:

ClearValues(α) ≡
values(α) := Undef
if first(α) 6= Undef then ClearValuesSeq(first(α))

ClearValuesSeq(α) ≡
ClearValues(α)
if next(α) 6= Undef then ClearValuesSeq(next(α))

3 Refining C#I by static class features

In this section we refine the imperative core C#I to C#C by adding classes (modules) concentrating
upon their static features (static fields, methods, constructors), including their initialization and
the parameter mechanism that provides value, ref and out parameters. For such a refinement
we a) extend the ASM universes and functions, or introduce new ones, to reflect the grammar
extensions for expressions and statements, b) add the appropriate constraints needed for the static
analysis of the new items (type constraints, definite assignment rules), c) extend some of the
macros, e.g. PropagatesAbr(α), to make them work also for the newly occurring cases, d) add rules
which define the semantics of the new instructions that operate over the new domains.

In C#C a program is a set of compilation units, each coming with “using directives” and
declarations of names spaces (including a global namespace) and types (for classes and interfaces6)
in the global namespace. For simplicity of exposition we disregard “using” directives and nested
namespaces by assuming everywhere the adoption of (equivalent) fully qualified names. The precise
syntax of classes and their static members, the rules for the accessibility of types and members
via the access modifiers (public, internal, protected, private) and illustrating examples are spelt
out in [3]. We define here the extension of the grammars for Vexp, Sexp, Stm and thereby of the
corresponding ASM domains, which reflects the introduction of sets of Classes with static Fields
and static Methods in C#C . The new set Arg of arguments appearing here reflects that besides
value parameters also ref and out parameters can be used.

Vexp ::= . . . | Field | Class ‘.’ Field

Sexp ::= . . . | Meth ( [Args] ) | Class ‘.’ Meth ( [Args] )

Arg ::= Exp | ‘ref’ Vexp | ‘out’ Vexp

Args ::= Arg {‘,’ Arg}

Stm ::= . . . | ‘return’ Exp ‘;’ | ‘return’ ‘;’
5Intuitively it should be clear that the execution of this recursive ASM provides simultaneously – in one step

– the set of all updates of all its recursive calls, as is needed here for the clearing purpose; see [2] for a precise
definition.

6Note that struct and enum types and delegates are introduced by further refinement steps below.
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The type constraints for the new expressions and the return statement are spelt out in [3]. The
difference between ref and out parameters at function calls and in function bodies is reflected by
including as AddressPositions all nodes whose parent node is labeled by refor out and by adding
the following definite assignment constraints:

ref arguments must be definitely assigned before the function call.
out arguments are definitely assigned after the function call.
ref parameters and value parameters of a function are definitely assigned at the beginning
of the function body.
out parameters must be definitely assigned when the function returns.

Therefore the definite assignment constraints for expressions are extended by the following
constraints for general argument expressions in function calls and for ref and out argument ex-
pressions:

For exp = M (args):
– before(args) = before(exp)
– RefParams(args) ⊆ after(args)
– after(exp) = after(args) ∪OutParams(args)

For exp = (ref e) or exp = (out e):
– before(e) = before(exp)
– after(exp) = after(e)

The definite assignment constraints for statements are extended for function bodies and return
statements as follows:

If s is the body of M , then before(s) = ValueParams(M ) ∪ RefParams(M ).
If stm = return; is in M , then

– OutParams(M ) ⊆ before(stm)
– after(stm) = vars(stm)

If stm = return e; is in M , then
– before(e) = before(stm)
– OutParams(M ) ⊆ after(e)
– after(stm) = vars(stm)

The presence of to-be-initialized classes and of method calls is reflected by the introduction of
new universes to denote methods, the initialization status of a type (which will be refined below
by exceptions) and the sequence of still active method calls (frame stack):

Meth = Type ×Msig
TypeState = Linked | InProgress | Initialized
Frame = Meth × Pos × Loc ×Values, where Values = (Pos → Result)

A method signature Msig consists of the name of a method plus the sequence of types of the
arguments of the method. A method is uniquely determined by the type in which it is declared
and its signature. The reasons for abruptions are extended by method return:

Abr = . . . | Return | Return(Value)

To dynamically handle the addresses of static fields (global or class variables), the initialization
state of types, the current method, the execution stack and the (initially) to be initialized type we
use the following new dynamic functions:

globals:Type × Field → Adr
typeState:Type → TypeState

frames:List(Frame)
meth:Meth

We extend the stipulations for the initial state as follows:
typeState(c) = Linked for each class c
meth = EntryPoint ::Main() [EntryPoint is the main class]
pos = body(meth) [The root position of the body]
locals = values = ∅ and frames = []
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The submachine ExecCsharpC extends the machine ExecCsharpI for C#I by additional
rules for the evaluation of the new expressions and for the execution of return statements. In the
same way the further refinements of ExecCsharp in the sections below consist only in the parallel
addition of submachines ExecCsharpO , ExecCsharpE , ExecCsharpD , ExecCsharpT , and
ExecCsharpU .

ExecCsharpC ≡
ExecCsharpExpC

ExecCsharpStmC

The rules for class field evaluation in ExecCsharpExpC are analogous to those for the evalu-
ation of local variables in ExecCsharpExpI , except for using globals instead of locals and for the
additional clause for class initialization. The rules for method calls use the macro InvokeStatic
defined below and reflect that the arguments are evaluated from left to right.

ExecCsharpExpC ≡ match context(pos)
c.f → if Initialized(c) then YieldIndirect(globals(c::f )) else Initialize(c)
c.f = exp → pos := exp
c.f = Ival → if Initialized(c) then

WriteMem(globals(c::f ), type(c::f ), val)
YieldUp(val)

else Initialize(c)
c.m(args) → pos := (args)
c.mI(vals)→ InvokeStatic(c::m, vals)

ref vexp → pos := vexp
ref Iadr → YieldUp(adr)

out vexp → pos := vexp
out Iadr → YieldUp(adr)

() → Yield([])
(arg, . . . ) → pos := arg
(val1, . . . ,Ivaln) → YieldUp([val1, . . . , valn ])
( . . . Ival,arg . . . )→ pos := arg

The macro InvokeStatic invokes the method – if the class is initialized, otherwise it initializes
the class. For methods which are not declared external, InvokeMethod updates the frame stack
and the current frame in the expected way, allocating via InitLocals for every local variable or
value parameter a new address and copying every value argument there. Since we will also have
to deal with external methods – whose declaration includes an extern modifier and which may
be implemented using a language other than C# – we provide here for their invocation a subma-
chine InvokeExtern, to be defined separately depending on the class of external (e.g. library)
methods7.

InvokeStatic(c::m, vals) ≡
if Initialized(c) then InvokeMethod(c::m, vals) else Initialize(c)

InvokeMethod(c::m, vals) ≡
if extern ∈ modifiers(c::m) then InvokeExtern(c::m, vals)
else let p = if StaticCtor(c::m) then pos else up(pos) in

frames := push(frames, (meth, p, locals, values))
meth := c::m
pos := body(c::m)
values := ∅
InitLocals(c::m, vals)

7For an illustration of this use of external methods see below the model for delegates.
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We remind the reader that in the following definition, all (also simultaneous) applications of the
external function new during the computation of the ASM are supposed to provide pairwise dif-
ferent fresh elements from the underlying domain Adr . See [9] and [5, 2.4.4] for a justification of
this assumption. See also the model for C#O where we provide a complete abstract specification
of the needed memory allocation to addresses of references and objects of struct type and to their
instance fields. paramIndex (c::m, x ) yields the index of the formal paramter x in the signature of
c::m.

InitLocals(c::m, vals) ≡
forall x ∈ LocalVars(c::m) do // addresses for local variables

locals(x ) := new(Adr , type(x ))
forall x ∈ ValueParams(c::m) do // copy value arguments

let adr = new(Adr , type(x )) in
locals(x ) := adr
WriteMem(adr , type(x ), vals(paramIndex (c::m, x )))

forall x ∈ RefParams(c::m) ∪OutParams(c::m) do // ref and out arguments
locals(x ) := vals(paramIndex (c::m, x ))

The rules for method return in ExecCsharpStmC trigger an abruption upon returning from
a method, resulting in the execution of ExitMethod.

ExecCsharpStmC ≡ match context(pos)
return exp; → pos := exp
return Ival;→ YieldUp(Return(val))
return; → Yield(Return)

Return → if pos = body(meth) ∧ ¬Empty(frames) then ExitMethod(Norm)
Return(val) → if pos = body(meth) ∧ ¬Empty(frames) then ExitMethod(val)
INorm;→ YieldUp(Norm)

The machine ExitMethod restores the frame of the invoker and passes the result value (if
any). Upon normal return from a static constructor it also updates the typeState of the relevant
class as Initialized . We also add a rule FreeLocals to free the memory used for local variables
and value parameters, using an abstract notion FreeMemory of how addresses of local variables
and value parameters are actually de-allocated.8

ExitMethod(result) ≡
let (oldMeth, oldPos, oldLocals, oldValues) = top(frames) in

meth := oldMeth
pos := oldPos
locals := oldLocals
frames := pop(frames)
if StaticCtor(meth) ∧ result = Norm then

typeState(type(meth)) := Initialized
values := oldValues

else
values := oldValues ⊕ {oldPos 7→ result}

FreeLocals

FreeLocals ≡
forall x ∈ LocalVars(meth) ∪ValueParams(meth) do

FreeMemory(locals(x ), type(x ))

Following [7, §17.11,17.4.5.1,10.11,10.4.5.1] a type c is considered as initialized if its static
constructor has been invoked (see the update of typeState(c) to InProgress in Initialize below)
or has terminated normally (see the update of typeState(c) to Initialized in ExitMethod above).
We therefore define:

Initialized(c) ⇐⇒ typeState(c) = Initialized ∨ typeState(c) = InProgress
8Under the assumption of a potentially infinite supply of addresses, which is often made when describing the

semantics of a programming language, one can dispense with FreeLocals.

13



To initialize a class its static constructor is invoked (.cctor = class constructor). This macro will
be further refined in C#E to account for exceptions during an initialization.

Initialize(c) ≡
if typeState(c) = Linked then

typeState(c) := InProgress
forall f ∈ staticFields(c) do

let t = type(c::f ) in WriteMem(globals(c::f ), t , defaultValue(t))
InvokeMethod(c::.cctor, [])

Note that the initialization of a class does not trigger the initialization of its direct base class (as
it is the case for Java).

With respect to the execution of initializers of static class fields the Ecma standard [7, §17.4.5.1]
says that the static field initializers of a class correspond to a sequence of assignments that are
executed in the textual order in which they appear in the class declaration. If a static constructor
exists in the class, execution of the static field initializers occurs immediately prior to executing
that static constructor. Otherwise, the static field initializers are executed at an implementation-
dependent time prior to the first use of a static field of that class. We do not model the last
behavior, since Microsoft’s C# compiler currently creates a static constructor in this case.

4 Refinement C#O of C#C by object related features

In this section we refine the static class features of C#C by adding objects (for class instances,
comprising arrays and structs) together with instance fields, methods and constructors9 as well as
inheritance (including overriding and overloading of methods). Accordingly we extend the ASM
universes and functions of C#C to reflect the new expressions and statements together with the
appropriate constraints and new rules, using appropriate refinements of some of the macros to
define the semantics of the new instructions of C#O. For the detailed definition of the syntax
of (members of) classes, interfaces, structs, etc., and of the constraints for the new modifiers
(‘abstract’,‘sealed’,‘readonly’,‘volatile’,‘virtual’,‘override’) together with illustrating ex-
amples, we refer the reader to [3].

The first extension concerns the sets Exp, Vexp, Sexp where the new reference and array types
appear. Rank serves to denote the dimension of array types; NonArrayType stands for value
types, classes and interfaces and will be extended in C#D to comprise also delegates. Value types
represent a feature that distinguishes C# from Java. A RefExp is an expression of a reference type
and an ArrayExp is an expression of an array type.

Exp ::= . . . | ‘null’ | ‘this’ | ‘typeof’ ‘(’ RetType ‘)’ | Exp ‘is’ Type | Exp ‘as’ RefType
| ‘(’ Type ‘)’ Exp | ‘new’ NonArrayType ‘[’ Exps ‘]’ {Rank} [ArrayInitializer]

Vexp ::= . . . | Vexp ‘.’ Field | RefExp ‘.’ Field | ‘base’ ‘.’ Field | ArrayExp ‘[’ Exps ‘]’

Sexp ::= . . . | ‘new’ Type ( [Args] ) | Exp ‘.’ Meth ( [Args] ) | ‘base’ ‘.’ Meth ( [Args] )

Exps ::= Exp {‘,’ Exp}

Rank ::= ‘[’ { ‘,’ } ‘]’

A this in an instance constructor or instance method of a struct is considered to be a Vexp. When
a this occurs in a class it is not a Vexp.

The extended type classification where simple types become aliases for struct types is re-
assumed by Fig. 4. We refer the reader to [3] for the detailed list of new type constraints. Also the
constraints for overriding and overloading of methods and the resolution of overloaded methods at
compile-time are spelt out there.

The subtype relation (i.e. the standard implicit conversion) is based on the inheritance relation
– defined as a finite tree with root object – together with the “implements” relation between
classes and interfaces. It is defined as follows:

T any type =⇒ T � object and T � T
class S derived from T =⇒ S � T

9Destructors or finalizers which relate to garbage collection are not modeled here.
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Figure 4: The classification of types of C#.

class, interface or struct S implements interface T =⇒ S � T
T array type =⇒ T � System.Array
T delegate type =⇒ T � System.Delegate
T value type =⇒ T � System.ValueType
T array or delegate type =⇒ T � System.ICloneable
T reference type =⇒ Λ � T [Λ is the null type]
S and T reference types, S � T =⇒ S[R1] · · · [Rk] � T[R1] · · · [Rk]

We list here the additional definite assignment rules for local variables of struct type:
If p is a local variable of a struct type S , then p.f is considered as a local variable for each
instance field f of S .
A local variable p of struct type S is definitely assigned ⇐⇒
p.f is definitely assigned for each instance field f of S .

We assume that as a result of field and method resolution the abstract syntax tree is annotated
with exact information. Each field access has the form T ::f where f is a field declared in the
type T . Each method call has the form T ::m(args) where m is the signature of a method declared
in type T . Moreover, certain expressions are reduced to basic expressions at compile-time.

For the base access of fields and methods we have:
base.f in class C is replaced by this.B ::f , where B is the first base class of C where a field
f is declared.
base.m(args) in class C is replaced by this.B ::M (args), where B ::M is the method sig-
nature of the method selected by the compiler (the set of applicable methods is constructed
starting in the base class of C ). This selection algorithm is described in [3], formalizing the
conditions stated in [7, §14.4.2/3].

For instance field access and class instance creation we have:
If f is a field, then f is replaced by this.T ::f , where f is declared in T .
Let T be a class type. Then new T ::M (args) is replaced by new T.T ::M (args).

Hence we split an instance creation expression into a creation part and an invocation of an instance
constructor. We assume that class instance constructors return the value of this.

Instance constructors of structs need an address for this.
Let S be a struct type. Then vexp = new S ::M (args) is replaced by vexp.S ::M (args).
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Otherwise, new S ::M (args) is replaced by x.S ::M (args), where x is a new temporary local
variable of type S . We assume that constructors of structs return the value of this.

For automatic boxing we have:
vexp = exp is replaced by vexp = (T)exp if type(exp) is a value type, T = type(vexp) and T
is a reference type. In this case we must have type(exp) � T .
arg is replaced by (T)arg if type(arg) is a value type, the selected method expects an
argument of type T and T is a reference type. In this case we must have type(arg) � T .

We are now ready to describe the extension of the dynamic state for the model of C#O. The
domain of values is extended to contain also references (assuming Ref ∩Adr = ∅) and struct values:
Value = SimpleValue∪Adr∪Ref ∪Struct . The set Struct of struct values can be defined as the set of
mappings from StructType::Field to Value. The value of an instance field of a value of struct type T
can then be extracted by applying the map to the field name, i.e. structField(val ,T , f ) = val(f ).

Two dynamic functions keep track of the runTimeType:Ref → Type of references and of the
type object typeObj :RetType → Ref of a given type. The memory function is extended to store
also references: mem:Adr → SimpleValue ∪ Ref ∪ {Undef }. For boxing we need a dynamic
function valueAdr :Ref → Adr to record the address of a value in a box. If runTimeType(ref )
is a value type t , then valueAdr(ref ) is the address of the struct value of type t stored in the
box. The static function instanceFields:Type → Powerset(Type::Field) yields the set of instance
fields of any given type t ; if t is a class type, it includes the fields declared in base classes of t .
We abstract from the implementation-dependent layout of structs and objects and use a function
fieldAdr : (Adr ∪Ref )×Type::Field → Adr to record addresses of fields. This function satisfies the
following properties:

If t is a struct type, then fieldAdr(adr , t ::f ) is the address of field f of a value of type t stored
in mem at address adr .
A value of struct type t at address adr occupies the following addresses in mem:

{fieldAdr(adr , f ) | f ∈ instanceFields(t)}
If runTimeType(ref ) is a class type, then fieldAdr(ref , t ::f ) is the address of field t ::f of the
object referenced by ref .
An object of class c is represented by a reference ref with runTimeType(ref ) = c and occupies
the following addresses in mem:

{fieldAdr(ref , f ) | f ∈ instanceFields(c)}
A function elemAdr :Ref ×N∗ → Adr records addresses of array elements. this is treated as first
parameter and is passed by value. Therefore paramIndex (c::m, this) = 0 and this is element of
both LocalVars(c::m) and ValueParams(c::m).

4.1 Transition rules for C#O

For the refinement of the ExecCsharp transition rules it suffices to add the ExecCsharpO rules,
defined by two submachines to evaluate the new expressions and to execute the new statements
respectively:

ExecCsharpO ≡
ExecCsharpExpO

ExecCsharpStmO

ExecCsharpExpO contains rules for each of the numerous forms of new expressions. For
better readability we organize them into parallel submachines each of which collects the rules for
expressions which belong to the same category (for type testing and casting, for fields, for arrays).
The rules below for calls of instance methods contain no class initialization test, since an instance
method which is not an instance constructor can be called only when the corresponding class is
already initialized.

ExecCsharpExpO ≡ match context(pos)
null→ null
this→ YieldIndirect(locals(this))
TestCastExpO

FieldExpO

16



new c → let ref = new(Ref , c) in
runTimeType(ref ) := c
forall f ∈ instanceFields(c) do

let adr = fieldAdr(ref , f ) and t = type(f ) in
WriteMem(adr , t , defaultValue(t))

Yield(ref )
exp.T ::M (args) → pos := exp
Ival.T ::M (args)→ if StructValueInvocation(up(pos)) then

let adr = new(Adr , type(pos)) in // create home for struct value
WriteMem(adr , type(pos), val)
values(pos) := adr

pos := (args)
val.T ::M I(vals) → if InstanceCtor(M ) ∧ ¬Initialized(T ) then Initialize(T )

elseif val 6= null then InvokeInstance(T ::M , val , vals)
ArrayExpO

A struct value invocation is a method invocation on a struct value.

StructValueInvocation(exp.T ::M (args)) ⇐⇒ type(exp) ∈ StructType ∧ exp /∈ Vexp

The rules for casting in TestCastExpO use the new macro YieldUpBox defined below. Note
that in expressions ‘exp is t ’ and (t)exp the type t can be any type, whereas in ‘exp as t ’ the
type t must be a reference type. The type of ‘exp is t ’ is bool, while the type of (t)exp and
‘exp as t ’ is t .

TestCastExpO ≡
typeof(t)→ Yield(typeObj (t))
exp is t → pos := exp
Ival is t → if type(pos) ∈ ValueType then

YieldUp(type(pos) � t) // compile-time property
else

YieldUp(val 6= null ∧ runTimeType(val) � t)
exp as t → pos := exp
Ival as t → if type(pos) ∈ ValueType then

YieldUpBox(type(pos), val) // box a copy of the value
elseif (val 6= null ∧ runTimeType(val) � t) then

YieldUp(val) // pass reference through
else YieldUp(null) // convert to null reference

(t)exp → pos := exp
(t)Ival → if type(pos) ∈ ValueType then

if t = type(pos) then YieldUp(val) // compile-time identity
if t ∈ RefType then YieldUpBox(type(pos), val) // box value

if type(pos) ∈ RefType then
if t ∈ RefType ∧ (val = null ∨ runTimeType(val) � t) then

YieldUp(val) // pass reference through
if t ∈ ValueType ∧ val 6= null ∧ t = runTimeType(val) then

YieldUp(memValue(valueAdr(val), t)) // un-box a copy of the value

The rules for instance field access and assignment in FieldExpO are analogous to those for
class variables, adding the evaluation of the instance, using fieldAdr instead of globals, and instead
of WriteMem the macro SetField defined below. We use type(exp.t ::f ) = type(t ::f ).

FieldExpO ≡
exp.t ::f → pos := exp
Ival.t ::f → if type(pos) ∈ ValueType ∧ val /∈ Adr then

YieldUp(structField(val , type(pos), t ::f ))
elseif val 6= null then

YieldUpIndirect(fieldAdr(val , t ::f ))
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exp1.t ::f = exp2 → pos := exp1
Ival.t ::f = exp → pos := exp
val1.t ::f = Ival2 → if val1 6= null then

SetField(val1, t ::f , val2)
YieldUp(val2)

C#O supports single dimensional as well as multi-dimensional arrays. Array types are read from
right to left. For example, int[][,] is the type of single-dimensional arrays of two-dimensional
arrays with elements of type int. By dim(n) we denote a sequence of n − 1 commas, hence
T[dim(n)] is the type of n-dimensional arrays with elements of type T . The length of the
ith dimension of an n-dimensional array represented by a reference ref is stored as the value of
dimLength(ref , i).

ArrayExpO ≡
new T[exp1, . . . ,expn][R1] · · · [Rk]→ pos := exp1

new T[l1, . . . ,Iln][R1] · · · [Rk]→
if ∀i ∈ [1 . .n] (0 ≤ li) then

let S = T[R1] · · · [Rk] in
let ref = new(Ref , [l1, . . . , ln ],S ) in

runTimeType(ref ) := T[dim(n)][R1] · · · [Rk]
forall i ∈ [1 . .n] do dimLength(ref , i − 1) := li
forall α ∈ [0 . . l1 − 1]× · · · × [0 . . ln − 1] do

WriteMem(elemAdr(ref , α),S , defaultValue(S ))
YieldUp(ref )

exp0[exp1, . . . ,expn] → pos := exp0
Iref [exp1, . . . ,expn]→ pos := exp1

ref [i1, . . . ,Iin]→
if ref 6= null ∧ ∀k ∈ [1 . .n] (0 ≤ ik < dimLength(ref , k − 1)) ∧

(RefOrOutArg(up(pos)) ∧ type(up(pos)) ∈ RefType →
elementType(runTimeType(ref )) = type(up(pos)))

then
YieldUpIndirect(elemAdr(ref , (i1, . . . , in)))

exp0[exp1, . . . ,expn] = expn+1 → pos := exp0
Iref [exp1, . . . ,expn] = exp → pos := exp1

ref [i1, . . . ,Iin] = exp → pos := exp
ref [i1, . . . ,in] = Ival →

let T = elementTyperunTimeType(ref )) in
if ref 6= null ∧ ∀k ∈ [1 . .n] (0 ≤ ik < dimLength(ref , k − 1)) ∧

(type(pos) ∈ RefType → runTimeType(val) � T )
then

WriteMem(elemAdr(ref , (i1, . . . , in)),T , val)
YieldUp(val)

Invocation of instance methods splits into virtual and non-virtual calls. The function lookup
yields the class where the given method specification is defined in the class hierarchy, depending
on the run-time type of the given reference.

InvokeInstance(T ::M , val , vals) ≡
if callKind(T ::M ) = Virtual then // indirect call, val ∈ Ref

let S = lookup(runTimeType(val),T ::M ) in
let this = if S ∈ StructType then valueAdr(val) else val in

InvokeMethod(S ::M , [this] · vals)
if callKind(T ::M ) = NonVirtual then // direct call, val ∈ Adr ∪ Ref

InvokeMethod(T ::M , [val ] · vals)

In C#O the notion of reading from the memory is refined by extending the simple equation
memValue(adr , t) = mem(adr) of C#I to fit also reference and struct types. This is done by the
following simultaneous recursive definition of memValue and getField along the given struct type.
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memValue(adr , t) =
if t ∈ SimpleType ∪ RefType then mem(adr)
elseif t ∈ StructType then {f 7→ getField(adr , f ) | f ∈ instanceFields(t)}

getField(adr , t ::f ) = memValue(fieldAdr(adr , t ::f ), type(t ::f ))

Also writing to memory is refined from WriteMem(adr , t , val) ≡ mem(adr) := val in C#I ,
recursively together with SetField along the given struct type:

WriteMem(adr , t , val) ≡
if t ∈ SimpleType ∪ RefType then mem(adr) := val
elseif t ∈ StructType then

forall f ∈ instanceFields(t) do SetField(adr , f , val(f ))

SetField(adr , t ::f , val) ≡ WriteMem(fieldAdr(adr , t ::f ), type(t ::f ), val)

The notion of AddressPos from C#I is refined to include also lvalue nodes of StructType.

AddressPos(α) ⇐⇒ FirstChild(α) ∧
label(up(α)) ∈ {ref, out, ++, --} ∨ label(up(α)) ∈ Aop ∨
(label(up(α)) = ’.’ ∧ α ∈ Vexp ∧ type(α) ∈ StructType)

Address positions are: ref 2, out 2, 2++, 2--, 2 op= exp, 2.f , 2.m(args).
YieldUpBox creates a box for a given value of a given type and returns its reference. The

run-time type of a reference to a boxed value of struct type t defined to be t . The struct is copied
in both cases, when it is boxed and when it is un-boxed.

YieldUpBox(t , val) ≡ let ref = new(Ref ) and adr = new(Adr , t) in
runTimeType(ref ) := t
valueAdr(ref ) := adr
WriteMem(adr , t , val)
YieldUp(ref )

We now justify in the context of the basic parallel execution mechanism of ASM rules the
sequentiality which is used in the following macros:

let adr = new(Adr ,T ) in P
let ref = new(Ref ,T ) in P
let ref = new(Ref , [l1, . . . , ln ],T ) in P

In the context of the machine ExecCsharp this comes up to specify an abstract memory man-
agement. In fact let adr = new(Adr ,T ) in P stands for the sequential execution of a new address
allocation followed by P :

let adr = new(Adr ,T ) in P ≡ (import adr do AllocAdr(adr ,T )) seq P

where the operator seq for sequential execution of two ASMs M ,N is to be understood as defined
for turbo ASMs in [4] (alternatively see [5, Ch.4.1]), namely as binding into one overall ASM step
the two steps of first executing M in the given state and then N in the resulting state. Similarly
let ref = new(Ref ,T ) in P stands for the sequential execution of address allocation for all instance
fields of a given type followed by P :

let ref = new(Ref ,T ) in P ≡
import ref do

Ref (ref ) := True
AllocFields(ref , instanceFields(T ))

seq P

Similarly we define the address allocation for elements of an n-dimensional array:
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let ref = new(Ref , [l1, . . . , ln ],T ) in P ≡
import ref do

Ref (ref ) := True
forall α ∈ [0 . . l1 − 1]× · · · × [0 . . ln − 1] do

import adr do
elemAdr(ref , α) := adr
AllocAdr(adr ,T )

seq P

The two macros for allocation of addresses and fields can be recursively defined as follows, relying
again upon the definition of recursive turbo ASMs in [2] (or see alternatively [5, Ch.4.1.2]):

AllocAdr(adr ,T ) ≡
Adr(adr) := True
if T ∈ StructType then AllocFields(adr , instanceFields(T ))

AllocFields(x , fs) ≡
forall f ∈ fs import adr do

fieldAdr(x , f ) := adr
AllocAdr(adr , type(f ))

5 Refinement C#E of C#O by exception handling

In this section we extend C#O with the exception handling mechanism of C#, which separates
normal program code from exception handling code. To this purpose exceptions are represented
as objects of predefined system exception classes or of user-defined application exception classes.
Once created (‘thrown’), these objects trigger an abruption of the normal program execution to
‘catch’ the exception – in case it is compatible with one of the exception classes appearing in the
program in an enclosing try-catch-finally statement. Optional finally statements are guaranteed to
be executed independently of whether the try statement completes normally or is abrupted.

For the refinement of ExecCsharp by exceptions, as in the previous section it suffices to add
the rules for ExecCsharpE and to extend the static semantics. The set of statements is extended
by throw and try-catch-finally statements satisfying the following constraints:

Stm ::= . . . | ‘throw’ Exp ‘;’ | ‘throw’ ‘;’
| ‘try’ Block {Catch} [‘catch’ Block] [‘finally’ Block]

Catch ::= ‘catch’ ‘(’ ClassType [Loc] ‘)’ Block

every try-catch-finally statement contains at least one catch clause, general catch clause
(i.e. of form catch block), or finally block
no return statements are allowed in finally blocks
a break, continue, or goto statement is not allowed to jump out of a finally block
a throw statement without expression is only allowed in catch blocks
the exception classes in a Catch clause appear there in a non-decreasing type order, more
precisely i < j =⇒ Ej 6� Ei (and obviously Ei � System.Exception) holds for every try-
catch statement try block catch (E1 x1) block1 . . . catch (En xn) blockn

In our model the sets of abruptions and type states have to be extended by exceptions. Due
to the presence of throw statements without expression, a stack of references is needed to record
exceptions which are to be re-thrown.

Abr = . . . | Exc(Ref ), TypeState = . . . | Exc(Ref ), excStack :List(Ref )

To simplify the exposition we assume that general catch clauses ‘catch block ’ are replaced at
compile-time by ‘catch (Object x ) block ’ with a new variable x . We also reduce try-catch-finally
statements to try-catch and try-finally statements as follows:
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try TryBlock
catch (E1 x1) CatchBlock1

...
catch (En xn) CatchBlockn
finally FinallyBlock

=⇒

try {
try TryBlock
catch (E1 x1) CatchBlock1

...
catch (En xn) CatchBlockn

} finally FinallyBlock

Unhandled exceptions in a static constructor are wrapped into a TypeInitializationException
by translating static T() { BlockStatements } into

static T() {
try { BlockStatements }
catch (Exception e) {
throw new TypeInitializationException(T,e);

}
}

For stm ≡ try tryBlock catch ( . . . ) catchBlock1 . . . catch ( . . . ) catchBlockn the reachability
rules and the definite assignment constraints are:

If reachable(stm), then reachable(tryBlock) and reachable(catchBlocki) for every i ∈ [1 . .n].
If normal(tryBlock) or normal(catchBlock) for at least one i ∈ [1 . .n], then normal(stm).

before(tryBlock) = before(stm)
before(catchBlocki) = before(stm) for every i ∈ [1 . .n]
after(stm) = after(tryBlock) ∩

⋂n
i=1 after(catchBlocki)

For a statement stm of the form try tryBlock finally finallyBlock the rules and constraints are:
If reachable(stm), then reachable(tryBlock) and reachable(finallyBlock).
If normal(tryBlock) and normal(finallyBlock), then normal(stm).

before(tryBlock) = before(stm)
before(finallyBlock) = before(stm)
after(stm) = after(tryBlock) ∪ after(finallyBlock)

5.1 Transition rules for C#E

The transition rules for ExecCsharpE are defined by two submachines. The first one provides
the rules for handling the exceptions which may occur during the evaluation of expressions, the
second one describes the meaning of the new throw and try-catch-finally statements.

ExecCsharpE ≡
ExecCsharpExpE

ExecCsharpStmE

ExecCsharpExpE contains rules for each of the numerous forms of run-time exceptions de-
fined in the subclasses of System.Exception. We give here seven characteristic examples and group
them for the ease of presentation into parallel submachines by the form of expression they are
related to, namely for arithmetical exceptions and for those related to cast expressions, reference
expressions or array expressions. The notion of FailUp we use is supposed to execute the code
throw new E() at the parent position, so that we define the macro by invoking an internal method
ThrowE with that effect for each of the exception classes E used as paramter of FailUp.

ExecCsharpExpE ≡ match context(pos)
uop Ival → if Checked(pos) ∧Overflow(uop, val) then FailUp(OverflowException)
val1 bop Ival2 →

if DivisionByZero(bop, val2) then FailUp(DivideByZeroException)
elseif DecimalOverflow(bop, val1, val2) ∨ (Checked(pos) ∧Overflow(bop, val1, val2))

then FailUp(OverflowException)
CastExceptions
NullRefExceptions
ArrayExceptions
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FailUp(E ) ≡ InvokeMethod(ExcSupport ::ThrowE , [ ])

CastExceptions ≡ match context(pos)
(t)Ival →

if type(pos) ∈ RefType then
if t ∈ RefType ∧ val 6= Null ∧ runTimeType(val) 6� t then

FailUp(InvalidCastException)
if t ∈ ValueType then // attempt to unbox

if val = Null then FailUp(NullReferenceException)
elseif t 6= runTimeType(val) then FailUp(InvalidCastException)

if type(pos) ∈ SimpleType ∧ t ∈ SimpleType ∧ Checked(pos) ∧Overflow(t , val)
then FailUp(OverflowException)

NullRefExceptions ≡ match context(pos)
Iref .t ::f → if ref = Null then FailUp(NullReferenceException)
ref .t ::f = Ival → if ref = Null then FailUp(NullReferenceException)
ref .T ::M (Ivals)→ if ref = Null then FailUp(NullReferenceException)

If the address of an array element is passed as a ref or out argument to a method, then the
run-time element type of the array must be equal to the parameter type that the method expects.
If an object is assigned to an array element, then the type of the object must be a subtype of
run-time element type of the array (array covariance problem). In both cases, if the condition is
not satisfied, an ArrayTypeMismatchException is thrown.

ArrayExceptions ≡ match context(pos)
new T[l1, . . . ,Iln][R1] · · · [Rk]→

if ∃i ∈ [1 . .n] (li < 0) then FailUp(OverflowException)
ref [i1, . . . ,Iin]→

if ref = Null then FailUp(NullReferenceException)
elseif ∃k ∈ [1 . .n] (ik < 0 ∨ dimLength(ref , k − 1) ≤ ik ) then

FailUp(IndexOutOfRangeException)
elseif RefOrOutArg(up(pos)) ∧ type(up(pos)) ∈ RefType ∧

elementType(runTimeType(ref )) 6= type(up(pos))
then FailUp(ArrayTypeMismatchException)

ref [i1, . . . ,in] = Ival →
if ref = Null then FailUp(NullReferenceException)
elseif ∃k ∈ [1 . .n] (ik < 0 ∨ dimLength(ref , k − 1) ≤ ik ) then

FailUp(IndexOutOfRangeException)
elseif type(pos) ∈ RefType ∧ runTimeType(val) 6� elementType(runTimeType(ref ))
then FailUp(ArrayTypeMismatchException)

The statement execution submachine splits naturally into submachines for throw, try-catch,
try-finally statements and a rule for the propagation of an exception (from the root position of
a method body) to the method caller. The semantics of throw; is explained in terms of the
exception Stack excStack . When an exception is caught, it is pushed on top of the exception stack.
Whenever a catch block terminates (normally or abruptly) the topmost element of the exception
stack is deleted. No special rules are needed for general catch clauses ‘catch block ’ in try-catch
statements, due to their compile-time transformation mentioned above. The completeness of the
try-finally rules is due to the constraints listed above, which restrict the possibilities for exiting a
finally block to normal completion or triggering an exception.

ExecCsharpStmE ≡ match context(pos)
throw exp; → pos := exp
throw Iref ;→ if ref = Null then FailUp(NullReferenceException)

else {InitStackTrace(ref ,meth), YieldUp(Exc(ref ))}
throw;→ Yield(Exc(top(excStack)))
try block catch (E x) stm . . . → pos := block
try INorm catch (E x) stm . . . → YieldUp(Norm)
try IExc(ref ) catch(E1 x1) stm1 . . . catch(En xn) stmn →

22



if ∃i ∈ [1 . .n] runTimeType(ref ) � Ei then
let j = min{i ∈ [1 . .n] | runTimeType(ref ) � Ei} in

pos := stmj

excStack := push(ref , excStack)
WriteMem(locals(xj ), object, ref )

else YieldUp(Exc(ref ))
try Iabr catch(E1 x1) stm1 . . . catch(En xn) stmn → YieldUp(abr)
try Exc(ref ) . . . catch( . . . ) Ires . . . → {excStack := pop(excStack), YieldUp(res)}
try tryBlock finally finallyBlock → pos := tryBlock
try Ires finally finallyBlock → pos := finallyBlock
try res finally INorm → YieldUp(res)
try res finally IExc(ref ) → YieldUp(Exc(ref ))
Exc(ref ) → if pos = body(meth) ∧ ¬Empty(frames) then

if StaticCtor(meth) then typeState(type(meth)) := Exc(ref )
else AppendStackTrace(ref ,meth(top(frames)))
ExitMethod(Exc(ref ))

In case an exception happened in the static constructor of a type, its type state is set to that
exception to prevent its re-initialization and instead to re-throw the old exception object. The
refinement of the macro Initialize defined in C#C re-throws the exception object of a type which
had an exception in the static constructor, thus preventing its re-initialization.

Initialize(c) ≡
. . .
if typeState(c) = Exc(ref ) then Yield(Exc(ref ))

6 Refinement C#D of C#E by delegates

In this section we extend C#E by features which distinguish C# from other languages, e.g. Java.
We start with delegates and then add further constructs whose semantics can be defined mainly
by reducing them via syntactical translations to the language model developed so far: properties,
indexers, overloaded operators, enumerators with the foreach statement, the using statement,
events and attributes.

6.1 Delegates

Delegate types in C# are reference types that encapsulate a static or instance method with a
specific signature, with the intention of having delegates playing the role of type-safe function
pointers. A delegate type D is declared as follows:

delegate T D(S1 x1, . . . ,Sn xn);

It represents the type of methods that take n arguments of type S1, . . . ,Sn and have return
type T . Delegate types appear as subtypes of System.Delegate and provide in particular the
callback functionality and asynchronous event handling. More precisely, the characteristic abil-
ity of delegates is to call a list of multiple methods sequentially. This feature is realized by an
invocationList :Ref → Delegate∗ ∪ {Undef } with which each delegate instance is equipped upon
its creation. Each such list is a per instance immutable, non-empty, ordered list of static methods
or pairs of target objects and instance methods. Upon invocation of a delegate instance with
arguments args, the methods of its invocation list are called one after the other with these argu-
ments args, returning to the caller of the delegate either the return value of the last list element
or the first exception a list element has thrown during its execution, preventing the remaining list
elements from being invoked.

Therefore we introduce a new universe Delegate = Meth∪(Ref ×Meth). To express the creation
and use of new delegate expressions the sets Exp,Sexp are extended by additional grammar rules
as follows, using a new set Dexp of delegate expressions:
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Sexp ::= . . . | Exp ( [Args] )
Exp ::= . . . | ‘new’ DelegateType ‘(’ Dexp ‘)’
Dexp ::= Meth | Type ‘.’ Meth | Exp ‘.’ Meth | Exp

A method T ::M is called compatible with the delegate type D iff T ::M and D have the same
return type and the same number of parameters with the same parameter types (including ref,
out, params modifiers). The type constraints on the new expressions are spelt out in [3].

We use the model ExecCsharpStmI , which includes a description of the for statement of
C#I , to express the sequentiality of the execution of delegate invocation list elements. In fact the
above delegate declaration can be translated for T 6= void in the following class:

sealed class D : System.Delegate {
public T Invoke(S1 x1, . . . ,Sn xn) {

T result;
for (int i = 0; i < this. length() ; i++)
result = this. invoke(i,x1, . . . ,xn);

return result;
}
private extern int length();
private extern T invoke(int i,S1 x1, . . . ,Sn xn);

}

A delegate invocation expression exp(args) can be syntactically translated into a normal method
call exp.D ::Invoke(args) where D is the type of exp.10 It then suffices to refine the ASM rule
InvokeExtern defined in ExecCsharpExpC to describe the meaning of the method D :: invoke,
which is to invoke the ith element of the invocation list on the given arguments, and analogously
of length.

InvokeExtern(T ::M , vals) ≡
if T ∈ DelegateType then

if name(M ) = length then DelegateLength(vals(0))
if name(M ) = invoke then InvokeDelegate(vals(0), vals(1), drop(vals, 2))

DelegateLength(ref ) ≡
YieldUp(length(invocationList(ref )))

InvokeDelegate(ref , i , vals) ≡
match invocationList(ref )(i)

T ::M → InvokeStatic(T ::M , vals)
(target ,T ::M ) → InvokeInstance(T ::M , target , vals)

Since there are no new statements appearing in C#D, the addition of ExecCsharpD consists in
the following ASM ExecCsharpExpD , which defines the meaning of delegate instance creation.

ExecCsharpExpD ≡ match context(pos)
new D(T ::M )→

let d = new(Ref ,D) in
runTimeType(d) := D
invocationList(d) := [T ::M ]
Yield(d)

new D(exp.T ::M ) → pos := exp
new D(Iref .T ::M )→

if ref = Null then FailUp(NullReferenceException)
else let d = new(Ref ,D) in

runTimeType(d) := D
invocationList(d) := [(ref ,T ::M )]

10In [7, §10.4.7] the members of a delegate are defined to be the members inherited from the class System.Delegate.
However neither .NET nor Rotor nor Mono do respect this stipulation since they add further methods to those
inherited. One such example is the method invoke we use here.
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YieldUp(d)
new D(exp) → pos := exp
new D(Iref )→

if ref = Null then FailUp(NullReferenceException)
else let d = new(Ref ,D) in

runTimeType(d) := D
invocationList(d) := invocationList(ref ) // Ecma §14.5.10.3
// Microsoft .NET Framework:
// invocationList(d) := [(ref ,D ::Invoke(S1, . . . ,Sn))]
YieldUp(d)

To be complete, one should add some rules which reflect the special character of delegate
invocation lists. As usual for lists, two invocation lists are equal (==) iff they have the same length
and the elements of the lists are pairwise equal, and they can be combined (concatenated with
‘+’) and elements can be removed from them (with ‘-’). To describe this specialization of list
operations in our model it suffices to refine the macro InvokeExtern by new rules for these
operators operator+, operator-, operator==.

InvokeExtern(T ::M , vals) ≡
. . .
if T ∈ DelegateType then

if name(M ) = operator+ then DelegateCombine(T , vals(0), vals(1))
if name(M ) = operator- then DelegateRemove(T , vals(0), vals(1))
if name(M ) = operator== then DelegateEqual(vals(0), vals(1))

Since invocation lists are considered to be immutable, combination and removal return new delegate
instances unless one of the arguments is null. The null reference represents a delegate instance
with an empty invocation list.

DelegateCombine(D , r1, r2) ≡
if r1 = Null then YieldUp(r2)
elseif r2 = Null then YieldUp(r1)
else let d = new(Ref ,D) in

runTimeType(d) := D
invocationList(d) := invocationList(r1) · invocationList(r2)
YieldUp(d)

DelegateRemove(D , r1, r2) ≡
if r1 = Null then YieldUp(Null)
elseif r2 = Null then YieldUp(r1)
else let l1 = invocationList(r1) and l2 = invocationList(r2) in

if l1 = l2 then YieldUp(Null)
elseif Subword(l2, l1) then let d = new(Ref ,D) in

runTimeType(d) := D
invocationList(d) := prefix (l2, l1) · suffix (l2, l1)
YieldUp(d)

else YieldUp(r1)

The notions of prefix and suffix are defined here in terms of the last occurrence of a subword:
prefix (u, v) is the part of v before the last occurrence of u in v and suffix (u, v) the part of v after
the last occurrence of u in v .

DelegateEqual(r1, r2) ≡
if r1 = Null ∨ r2 = Null then YieldUp(r1 = r2)
else let l1 = invocationList(r1) and l2 = invocationList(r2) in

YieldUp(length(l1) = length(l2) ∧ ∀i < length(l1) (l1(i) = l2(i)))
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6.2 Properties, events and further features in C#D

In this section we add further language features of C# whose semantics can be easily defined in
terms of the model developed so far, essentially by simple syntactical reductions.

Properties. Collections of a read and/or a write method for attributes of a class or struct are
called properties in C# and declared in the following form (we skip the modifiers):

Type Identifier ‘{’ [‘get’ Block] [‘set’ Block] ‘}’

By definition a read-write property has a get and a set accessor, a read-only property has only
a get accessor, a write-only property has only a set accessor. The identifier of a property P of
type T can be used like a field identifier11, except that it cannot be passed as ref or out argument.
Furthermore it is required that the body of a get accessor is the body of a method with return
type T , that a set accessor has a value parameter named value of type T and that its body is the
body of a void method. Using the signatures T get P(); and void set P(T value);, which are
reserved for get and set accessors, the intended semantics of properties is reduced to the semantics
of methods, using the following syntactical reductions:

T P {
get { getAccessor }
set { setAccessor }

}

=⇒

T get P() {
getAccessor

}
void set P(T value) {

setAccessor
}

exp.P =⇒ exp.get P() exp1.P = exp2; =⇒ exp1.set P(exp2);

This translation comprises also expressions of the form exp1.P op= exp2, since they can be assumed
to be compiled to 〈x = exp1, y = x.get P() op exp2, x.set P(y), y〉 with fresh local variables x , y ,
using as auxiliary operator the comma operator familiar from C/C++. This necessitates auxiliary
rules for going through sequences of expressions of the following form:

〈exp, . . .〉 → pos := exp
〈val1, . . . ,Ivaln〉 → YieldUp(valn)
〈. . . Ival,exp . . .〉 → pos := exp

Indexers. Indexers can be used like array elements except that they cannot contain ref or out
parameters and their elements cannot be passed as ref or out arguments. They are declared in a
class or struct type as follows (we skip the modifiers):

Type ‘this’ ‘[’ [Params] ‘]’ ‘{’ [‘get’ Block] [‘set’ Block] ‘}’

Analogously to the constraints for properties, for an indexer of type T with parameters p, the
body of a get accessor is the body of a method with parameters p and return type T , the body of
a set accessor is the body of a void method with parameters p and an implicit value parameter
named value of type T . A base class indexer can be accessed by base[exps]. Using the signatures
T get Item(params) and void set Item(params,T value), which are are reserved for get and set
accessors, the intended semantics of properties is reduced to the semantics of arrays and methods
via the following compile-time translation (and corresponding operator expression translation as
explained for properties):

T this[params] {
get { getAccessor }
set { setAccessor }

}

=⇒ T get Item(params) { getAccessor }
void set Item(params,T value) { setAccessor }

Events. Events can be declared in C# like fields, in the form ‘event’ DelegateType Identifier ‘;’
(we omit the modifiers), or like properties, in the form

‘event’ DelegateType Identifier ‘{’ ‘add’ Block ‘remove’ Block ‘}’.
11Without knowing whether it is accessed directly or whether an accessor method is being called.
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Outside the type that contains the declaration, an event X can only be used as the left-hand
operand of += and -= in expressions X += exp and X -= exp of type void; within the type that
contains the declaration, field-like events can be used like fields of delegate types. The accessors
of property-like events have to be bodies of void methods with an implicit parameter value of
DelegateType.

The semantics of events in C# follows the Publish/Subscribe pattern. A class publishes an
event it can raise, so that any number of classes can subscribe to that event. When the event is
actually raised, each subscriber is notified that the event has occurred, namely by calling a delegate
whose invocation list is executed with the sender object and the event data as its arguments. This
idea is realized as follows. The event sender class that raises an event named X has the member
event X EventHandler X ; where the delegate type X EventHandler for the event is declared
as follows (with two arguments, the first one for the publisher and the second one for the event
information object, which must be derived from the class EventArgs):

delegate void X EventHandler(object sender, X EventArgs e);.

To consume the event, the event receiver declares an event-handling method Receive X with the
same signature as the event delegate: void Receive X (object sender, X EventArgs e) { . . . }.

To register the event handler, the event receiver has to add the Receive X method to the
event X of the event sender object: X += new X EventHandler(this.Receive X );

The event sender raises the event by invoking the invocation list of X with the sender object
and the event data, e.g. void On X (X EventArgs e) { if (X != null) X (this,e); }.

It suffices to assign a meaning to void add X (D value) and void remove X (D value),
which are reserved signatures for every event X of delegate type D . This is done by the following
translation of field-like events, anticipating the lock statement of C#T which is explained in [6]12.

class C {
private D X ;
void add X (D value) {
lock (this) { X = X + value; }

}
void remove X (D value) {
lock (this) { X = X - value; }

}
}

Further constructs. For similar syntactical reductions to those given above, which can be
used to define the semantics of overloaded standard mathematical operators and user-defined con-
versions, of enumeration related statements ‘foreach (T x in exp) stm’, of using statements
‘using ( resource ) stm’, of parameter arrays and of attributes see [3].

7 Refinement C#U by pointers in unsafe code

In this section we add the features C# offers for using pointers (coming with address-of and
dereferencing operators ‘&’, ‘*’, ‘->’ together with pointer arithmetic) to directly work on memory
addresses, bypassing the type checking by the compiler – hence the name ‘unsafe’ code blocks.
This extension includes a mechanism called pinning of objects to prevent the runtime during the
execution of a ‘fixed’ statement to manage via the garbage collector memory one wants to address
directly. As an alternative to pinning, data of unmanaged type can also be ‘stackalloc’ated,
instead of using the heap.

Java has no such unsafe extension. The refinement consists mainly in a definition of the
memory function in terms of byte sequences, using an encoding of simple types and a corresponding
refinement of the function structField .

12If one prefers not to depend on the thread model C#T , one can consider lock statements lock (exp) stm
translated for single-thread execution by { Object o = exp; stm } (with a fresh variable o), which is then refined in
C#T for the multipe thread execution model.
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7.1 Signature refinement for C#U

We refine Type by adding pointer types to value and reference types.

Type ::= ValueType | RefType | PointerType PointerType ::= UnmanagedType ‘*’ | ‘void’ ‘*’

where unmanaged types are types which are not managed and managed types are recursively
defined as a) reference types or b) struct types that contain a field of a managed type or a pointer
to a managed type. The subtype relation is extended to pointer types such that Λ � T* � void*.
Exp and Vexp are extended by address-of and dereferencing expressions and expressions to denote
the values of a new function indicating the ‘sizeof’ unmanaged types. Stm is extended to reflect
‘unsafe’ code blocks, ‘fixed’ statements and ‘stackalloc’ation of arrays. ‘unsafe’ can also
appear as modifier for classes, structs, interfaces, delegates as well as for fields, methods, properties,
indexers, operators, events, constructors, destructors.

Exp ::= . . . | ‘&’ Vexp | Exp ‘->’ Meth ( [Args] ) | Exp ‘->’ Field
| ‘sizeof’ ‘(’ UnmanagedType ‘)’

Vexp ::= . . . | ‘*’ Exp

Stm ::= . . . | ‘unsafe’ Block | ‘fixed’ ‘(’ PointerType Loc = Exp ‘)’ Stm

Bstm ::= . . . | PointerType Loc ‘=’ ‘stackalloc’ UnmanagedType ‘[’ Exp ‘]’ ‘;’

In the following expressions, the basic arithmetical operators are used for pointer increment and
decrement, pointer addition and subtraction, pointer comparison, and pointer conversion (where
p and q are of a pointer type, i is of integer type):

++p, --p, p++, p--, p + i , i + p, p - i , p - q , p == q , p != q , p < q , p <= q , p > q , p >= q
(T*)i , (T*)p, (int)p, (uint)p, (long)p, (ulong)p

On the types of the new expressions the following constraints are imposed.

Expression Constraints Type of expression
sizeof(t) t unmanaged type int
*e type(e) = T*, T 6= void T
&v v a fixed variable T*, where T = type(v)
e -> m type(e) = T*, T 6= void type(T ::m)
e[i] type(e) = T*, T 6= void, type(i) integral T

We assume e-> m to be translated to (*e).m and e[i] to *(e + i).

For statements the following type constraints are assumed:

Statement Constraints
T* p = stackalloc T[exp]; type(exp) = int, T unmanaged
fixed (char* p = exp) stm type(exp) = string, p read-only in stm
fixed (T* p = exp) stm type(exp) = T[R], T unmanaged, p read-only in stm
fixed (T* p = &vexp) stm type(vexp) = T , T unmanaged, vexp a moveable variable,

p read-only in stm

A variable is called moveable (by the garbage collector) iff it is not a fixed variable. Fixed variables
are (by recursive definition): local variables, value parameters, *exp for exp of pointer type, and
instance field expressions v.f if v is a fixed variable of struct type T and f is an instance field
of T .

The local variable p in the fixed statement is called a pinned local variable. A pinned local
variable is a read-only variable. It is not allowed to assign a new value to it in the body of the
fixed statement. Hence, the garbage collection can determine the pinned objects by looking at the
values of pinned local variables on the frames stack.

The principal refinement in the ASM extension ExecCsharpU for C#U is that of the memory
together with its operators, where the set of SimpleValues is replaced by Bytes (8-bit strings),
using non-negative integers as memory addresses (Adr = N):

mem:Adr → Byte ∪ Ref ∪ {Undef }
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The partial functions to encode (resp. decode) values of a given simple type T by byte sequences,
of a length (number of bytes) depending on sizeOf (T ), satisfy for values val the equations

decode(T , encode(val)) = val and length(encode(val)) = sizeOf (T ).

For every pointer type T* holds sizeOf (T*) = sizeOf (void*).
A function fieldOffset :UnmanagedStructType × Field → N is used to describe the layout of

unmanaged structs. It has to satisfy the following constraint for ever unmanaged struct type T
and instance field f of T (overlapping fields are allowed in C#U ):

fieldOffset(T , f ) + sizeOf (type(f )) ≤ sizeOf (T )

We assume that if adr is an address allocated using new(Adr ,T ) for struct type T , then for every
instance field f of T the equation fieldAdr(adr , f ) = adr + fieldOffset(T , f ) holds.

To determine the layout of arrays with unmanaged element type we stipulate the following
refinement of the function elemAdr which reflects that array elements are stored such that the
indices of the right most dimension are increased first, then the next left dimension, and so on. For
runTimeType(ref ) = T[dim(n)], where T is an unmanaged type and li = dimLength(ref , i − 1)
for i ∈ [1 . .n], we assume the following:

elemAdr(ref , [i1, i2, . . . , in ]) = elemAdr(ref , [0, . . . , 0])+(. . . (i1 · l2 + i2) · l3 + . . .+ in) ·sizeOf (T )

7.2 Transition rule refinement for unsafe code

Besides the rules below which define the semantics of the new expressions and statements we have
to refine the notions of reading from and writing to memory for values of unmanaged type.

memValue(adr , t) =
if t ∈ RefType then mem(adr)
elseif t ∈ UnmanagedType then

[mem(adr + i) | i ∈ [0 . . sizeOf (t)− 1] ]
elseif t ∈ StructType then
{f 7→ getField(adr , f ) | f ∈ instanceFields(t)}

getField(adr , t ::f ) = memValue(fieldAdr(adr , t ::f ), type(t ::f ))

WriteMem(adr , t , val) ≡
if t ∈ RefType then mem(adr) := val
elseif t ∈ UnmanagedType then

forall i ∈ [0 . . sizeOf (t)− 1] do mem(adr + i) := val(i)
elseif t ∈ StructType then

forall f ∈ instanceFields(t) do SetField(adr , f , val(f ))

SetField(adr , t ::f , val) ≡ WriteMem(fieldAdr(adr , t ::f ), type(t ::f ), val)

Values of unmanaged struct types are directly represented as sequences of bytes. Hence, the
function structField has to be refined to extract a subsequence in case of unmanaged struct types:

structField(val ,T , f ) =
if T ∈ ManagedType then val(f )
else let n = fieldOffset(T , f ) in [val(i) | n ≤ i < n + sizeOf (type(f ))]

In the rules for ExecCsharpExpU we have & 2 as additional address position. We follow
the implementation in Rotor and .NET in formulating the Null check to prevent writing to null
addresses; the ECMA standard describes this check as optional.

ExecCsharpExpU ≡ match context(pos)
sizeof(T)→ Yield(sizeOf (T ))
&exp → pos := exp
&Iadr → YieldUp(adr)
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*exp → pos := exp
*Iadr → if adr = Null then // null pointer check optional

FailUp(NullReferenceException)
else YieldUpIndirect(adr)

*exp1 = exp2 → pos := exp1

*Iadr = exp2 → pos := exp2

*adr = Ival → if adr = Null then // null pointer check optional
FailUp(NullReferenceException)

else
WriteMem(adr , type(pos), val)
YieldUp(val)

The rules for pointer arithmetic can be summarized as follows:

Apply(+(T*, int), adr , i) = adr + i · sizeOf (T )
Apply(+(int,T*), i , adr) = adr + i · sizeOf (T )
Apply(-(T*,T*), adr1, adr2) = (adr1 − adr2)/sizeOf (T )
Convert(T*, adr) = adr = Convert(S , adr) for S ∈ {int, uint, long, ulong}
Convert(T*, i) = i

In the execution of the stackalloc statement we assume that new(adr ,T , i) allocates i consecutive
chunks of addresses of size sizeOf (T ) which are later de-allocated on method exit in FreeLocals.

ExecCsharpStmU ≡ match context(pos)
unsafe block → pos := block
unsafe INorm → YieldUp(Norm)

T* loc = stackalloc T[exp];→ pos := exp
T* loc = stackalloc T[Ii]; → let adr = new(Adr ,T , i) in

WriteMem(locals(loc),T*, adr)
YieldUp(Norm)

The run-time execution of fixed statements can be explained by syntactical transformations.

Statement Run-time execution
fixed (char* p = exp) stm { char* p; p = Cstring(exp); stm }
fixed (T* p = exp) stm { T* p; p = &exp[0]; stm }
fixed (T* p = &vexp) stm { T* p; p = &vexp; stm }

In the first case, it is assumed that Cstring(s) is an internal function that returns the address of
the first element of a C-style null-terminated character array representation of the string s. How
it is related to the original representation of the string is not specified in [7].
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