Talking to Autonomic Systems:
The NL4AC Approach

Vincenzo Gervasi Vincenzo Ambriola Stefano Pogliani
Guido Vetere

DRAFT - DO NOT DISTRIBUTE

Abstract

Autonomic systems have as their principal raison d’étre the simplifi-
cation of the management of large and complex IT systems. In this view,
the final goal of the autonomic research effort was to develop “autonomic
systems [that] will manage themselves according to an administrator’s
goals” [6]. Yet, identifying, expressing, specifying, and validating these
goals can be a challenge in itself, which in large part must be overcome
every time the goals themselves change which can be quite often in
the life of a complex systems. In this paper we explore a solution to
these problems based on the use of natural language technologies. We
motivate our choices, present a sample scenario, and describe the initial
implementation of the NL4AC (Natural Language for Autonomic Comput-
ing) system, as an Eclipse plug-in focusing on log analysis and problem
determination.

1 Introduction

Intro and motivations from VA’s seminar role of knowledge, ontology, lan-
guage.

The paper is structured as follows. We first present a motivating scenario in
Section 2, followed by a description of the NL4AC system, its implementation,
and its impact on the scenario presented. Section 4 presents the results of
industrial evaluation, which we have conducted jointly with IBM*. Section 5
compares our approach with some of the related work found in the literature.
Some conclusions and plans for future work conclude the paper.

2 The current scenario

In this section we will provide an overview of the current state of the art in
autonomic computing, with a particular focus on the specific problems we will
discuss in the following of the paper. We will first outline the problems, then

* Put exact lab name
here

review the technology which is currently available to solve them, and finally
motivate our unsatisfaction with the development process which is required by
the current technology.

2.1 Autonomic problems

The deployment of autonomic technology in an organization’s IT infrastructure
can be an important factor in ensuring reduced management costs, increased
reliability and availability of the infrastructure, and improved response time in
the case of failures or external attacks to the IT resources. Yet, each organi-
zation’s needs and priorities are different, and there is no such thing as a “one
size fits all” autonomic solution. Hence, before a comprehensive and reliable
autonomic management solution can be set up, extensive consulting with the
various decisional and technical levels in the organization must be conducted,
and possibly several prototypes must be produced, deployed, and tested on the
field to collect enough feedback to drive final development, in what is typically
a spiral development model, based on extensive prototyping.

To keep the presentation simple, we will focus here on a specific sub-topic of
some relevance in autonomic systems: problem determination and log analysis.
Problem determination focuses on identifying the causes of any deviation from
the expected behavior of a system. Typically, this is performed by directly ob-
serving the system behavior, comparing expected performance to observed one,
and once a deviation is noticed, hypothesizing the cause, based on knowledge
of the system’s structure and internals. A more effective approach involves ob-
serving not, only the external behavior of the system, but also that part of its
internal behavior which is exposed by its various components through so-called
log files'; thanks to the additional information made available through log files,
both symptoms and diagnosis can be more precise, and ultimately any action
taken to remedy the deviation can be more timely and focused on the real prob-
lem. As the simplest of examples, consider the case where a complex system
simply stops performing completely: based purely on external observation, one
could try to restore the system to functioning by shutting it all down and then
restarting it, whereas with more precise observation coming from log files, a
system manager could notice that only a specific sub-component or service is
down, and can restart only the relevant subsystem, possibly reducing downtime
considerably.

The analysis of log files, from various sources, in order to discover any prob-
lem, or simply to measure performances, is called log analysis. Log analysis can
be described as the search for relevant patterns in complex log data. Despite be-
ing conceptually simple, in practice log analysis often presents unexpected prob-
lems. First, and most relevant, which patterns is worth or necessary searching
for (and are thus relevant) is typically far from obvious. As happens for most
other information retrieval and eztraction tasks, there is a definite trade-off to

'Which, given the current technology, may not be files at all, but made available to in-
spections through various kind of programmatic interfaces, or broadcast on a common event
bus.

be found between completeness (we want all the interesting patterns to be cap-
tured) and relevance (we want the amount of data produced by analysis to be
manageable). Second, syntactic and semantic differences in log data can make
analysis a challenge. For example, different subsystems may refer to the same
concept in different ways in their log data, or refer in the same way to slightly
different concepts. A number of technological issues, such as format of the log
file and clock skew between different systems and machines, also come in the
way.

2.2 Current technology

Several years of industrial and academic research have produced solid, work-
ing solutions* for the two problems mentioned above. The second one, that
of log heterogeneity, has been addressed by IBM*%% the CBEM (Common
Base Event Model) standard model for log events, a y providing log parsing
technology for converting logs in a variety of format to CBEM. A arser in
the Autonomic Toolkitc%]small software module (written in Java h reads
log records in a custom format, and emits corresponding records in CBEM for-
mat. The translation may both add information (e.g., identity of the reporting
modules, which the original application, writing on its own log file, may have
considered redundant) and loose some (e.g., details for which no corresponding
CBEM property has been defined). In such cases, it is customary to put any
extra information in a textual, free-form "message" field in the CBEM record
The first problem, that of identifying relevant pattern, has been addresse

in a similar way by assuming that a software module, again implemented in
Java, will sift through the various log flows and return all the relevant patterns,
or correlations in autonomic parlance, found therein. However, while the con-
version of log format to CBEM is a one-time job, which can be assumed will be
performed once and for all by a competent developer, finding correlation is a
continuous activity. The notion of what is a relevant pattern of events changes
depending on protean business needs, varying pattern of attack from malicious
third parties, different level of details requested, shifting priorities, required
quality-of-service levels which change depending on market factors, and so on.
The assumption that correlations will be found by writing a piece of software
anew for each possible patter of interest is thus quite burdensome to final users,
who may even be (and often are) incapable of performing the task themselves.
This situation leads to the (unsatisfactory) current development process we will
describe in the next section. @

2.3 Current process

In current practice, the development of new correlators, as the software modules
responsible for identifying patterns are known, is typically conducted jointly by
the customer (with representatives both at the managerial and at the technical
levels) and by a consultant (see Figure 1)C;£ndard requirements elicitation ap-
proaches are used (e.g., interviews, brainstorming, mock-ups) to elicit the goals

* menti
Toolkit

* Check
and add

on__Autonomic

spogliani
Note
Also mention the TPTF project at Eclipse (on which ACTK is based).
Mentioning both an OpenSource and a private implementation makes the concept stronger

Fai ampi riferimenti a http://www.eclipse.org/tptp/ soprattutto per le persone che vogliano approfondire l'argomento e capire cosa ci sta dietro

spogliani
Note
Mi sembra che CBE non sia una cosa "IBM", ma una cosa OASIS.
E' meglio precisare e indicare le fonti del sito OASIS

spogliani
Note
Anche in TPTK....

spogliani
Note
si... ma é packaged come Plugin di Eclipse

spogliani
Note
si e no... in effetti lo fai attraverso il concetto di "Extended Property" che ti permette di categorizzare meglio le cose

spogliani
Note
c'é anche un altro fatto.
In effetti mentre la conversione CBE é, come dici, un process "one-off" che puo' essere delegato ad uno svilippatore, l'analisi delle correlazioni, essendo un processo '"contnuo" deve necessariamente essere rivolta a persone con skills diversi da quelli della pura programmazione....

spogliani
Note
The customer conosce il contesto (sia business che tenico). Il consulente conosce la tecnologia del correlatore.
Mi sembra che sia meglio spiegare la cosa in questo modo....
Ossia, per fare questo lavoro occorrono 3 skills:
1. il business
2. chi conosce l'infrastruttura dell'applicazione che gira
3. chi conosce la tecnologia per scrivere correlazioni
Io lascerei stare la distinzione tra "customer" e "consultant"

Cus tomer’s site

Client & analyst

C\‘S

S

Log

Developer)
Dev elopment site

Figure 1: The current process for developing a log correlator.

of the customer, then the consultant, with help from the customer’s technical
personnel, formulates a set of informal guidelines whi e then sent, together
with some sample data, to a remote development sit@ writing the relevant
log correlators (and often, any needed log parser). The software comes back
from the development site for deployment and testing at the customer’s site,
where it is verified. Typical cycle time for this activity has been reported to be
about a week*, although exact timing may vary depending on the complexity of
the correlation rules to be developed, on the priority assigned to the customer,
etc.

Most often, the development and refinement of a correlator will take several
rounds, as the customer clarifies his own needs, the consultant gains a better
understanding of the customer’s goals, and the developer embodies precisely all
the details in the code. The time from initial inception to final delivery may
be thus several weeks, during which the customer’s needs will not be satisfied.
Moreover, whenever these needs change (for any of a number of reasons, as
discussed above), or new needs arises, the process will have to be repeated.
If, for example, the customer deploys a new subsystem in its IT infrastructure
(say, load-balancing hardware), the set of log flows to be analyzed changes, and
new analysis opportunities arise, opening the scope for updates to previously
developed correlators, and for developing new ones.

This substantial cycle time we regard as unsatisfactory, especially in view of
the general purpose of autonomic technology in general: reacting automatically,
quickly and effectively to difficult circumstances, like a breakage or an external

* Stefano:
for this?

any source

spogliani
Note
"Remote " in senso lato... nel senso cioé che NON é chi gestisce il business o chi gestisce le applicazioni a runtime che sviluppa il correlatore...

spogliani
Note
Guarda qualcuna delle storie descritte qui: http://www-03.ibm.com/autonomic/stories.html

Non ci sono statements su quanto é lungo fare le correlazioni con il vecchio metodo.... purtroppo!

Cus tomer’s site

Client & analyst

Requirements -
1 '

Correlations

C\’S

Figure 2: The correlator development process with the NL4AC approach.

attack to the IT infrastructure. It is precisely under such circumstances that
timeliness is more important.

3 The NL4AC approach

The problems with the current process, which we described above, can be as- @

cribed mainly to a classic phenomenon of communication impedance: the lan-
guage used by the customer to express his goals, concerns and problems (typ-
ically, English and possibly some diagram) and that required as input by the
autonomic system (Java source code) are too far apart. This language mismatch
opens the scope for ambiguities, misinterpretations, delays which are one of the
root causes for the need of several iterations of the process. Moreover, the task
of writing log parsers and correlators directly in Java, while not terribly difficult
from a technical point of view, is often out of reach for many decision-makers in
the customer company, which are the ones whose goals the autonomic system
should try to satisfy. Hence, a number of different subjects have to join in the

Questo paragrafo é process, which again slows down “rapid” prototyping approaches.

veramente importante. We address this problem by changing the languages that are used. In partic-
ular, we advocate that using controlled natural language to capture customers’
goals and for generating the—relevantseftwaremodmtes;,thedevelopment pro- -~
cess cycle time can be radically reduced, making truly interactive development
of autonomic solutions feasible, while at the same time reducing the risk of error
injection due to communication impedance. The process we envision is thus the

one depicted in Figure 2.

As a proof of concept, we have in fact developed such a solution for log
correlation, which we will describe in some detail in this section. The natural
language processing technology we use%)ls been deployed in a set of plug-ins
for the Autonomic Computing Toolkit;, ed the NL4AC Plug-ins for Eclipse.
Field validation of the proposed technique will be discussed in the next section,
after presentation of the technology.

spogliani
Note
é proprio questo che, secondo me, va spiegato nei paragrafi precedenti

spogliani
Note
Rejected set by spogliani

spogliani
Note
None set by spogliani

spogliani
Text Box
Questo paragrafo é veramente importante.

spogliani
Note
Mi sembra che l'avete fatto su TPTK...

3.1 Features description

The NL4AC plug-ins for Eclipse provide an environment for writing correlators
for the Fclipse Test and Performance Tools Platform or TPTP (which include
the Log and Trace Analyzer framework). In particular, NLAAC allows correla-
tors to be written in (controlled) natural language, rather than as Java code.
The NL4AC plug-ins implement a framework and architecture which is fairly
general and vastly extensible, as will be pointed out later in Section 3.5; many
aspects of their operations are controlled via configuration files or sub-plug-ins?.
The configuration provided in the prototype implementation allows end-users
to describe the desired correlation in terms of relationships and predicates on
the values of attributes of the CBEM model.
The NL4AC plug-ins offer the following services:

creation of a NL correlation project;

e parsing and analysis of NL? text;

feedback on the results of the parsing process;

synthesis of Java code for a correlator based on the NL input;
e “live” testing of the correlator on real data;
e export of a TPTP correlation plug-in with the generated code.

These services are provided in the context of the standard document editing
model of Eclipse, and the operations of the NL4AC plug-ins mimic as com-
pletely as possible the usual edit/compile/get feedback/test cycle used for code
development.

The plug-ins also provide a new document type (with extension .corr),
a wizard to create such documents, a corresponding editor with completion
and syntax coloring, and problem markers to report on parsing and analysis
problems.

It is worth noticing here that although the NL4AC system itself is embedded
in the Eclipse integrated development environment, it is not aimed directly at
developers only; on the contrary, we assume that a consultant at the customer
site, sitting next to his customer, will be the most typical user of the technology.

3.2 Architecture description

In this section we describe the high-level architecture of the NL4AC system
in terms of its logical components, allocation of components to plug-ins, and
interaction between these components during operations.

>Notice that these sub-plug-ins are not implemented as Fclipse extension points; rather,
the more specialized CircE [2]| extensibility architecture is used.
3The current configuration supports English as native language.

S

spogliani
Note
qui tocchi un nervo vivo.... ci sono molte persone in IBM che si pongono questo stesso problema....
...anche se, come mostra Azureus, il problema é un falso problema... tutto dipende dalla use-friendlyness!

3.2.1 Logical components

The NL4AC system consists of four logical components, namely
e the CICO domain-based parser, which is used to parse English text;

e the CIRCE modular expert system, which allows the system to reason on
and augment the results of the parsing;

e the NLAAC/Eclipse subsystem, which implements the interface between
Eclipse and the other components, and drives the overall computation,
and

e the Delegating Log Correlator, which by implementing lazy dynamic
class loading and a delegation-based correlation engine allows the end user
to immediately test the correlation that is being developed without having
to deploy a correlation plug-in for each test.

Of these, the CICO and CIRCE components were developed prior to and
independently from the NL4AC project; full documentation about them can be
found in [3, 4, 2]. While the basic design of both components has remained
the same, they have been re-implemented for the NL4AC system. In particular,
CICO has been packaged as a OS-specific library (Linux and Windows versions
are provided) accessed through JNT*, while CIRCE has been rewritten in Java.

The NL4AC/Eclipse and Delegating Log Correlator components are docu-
mented in the following.

3.2.2 NL4AC/Eclipse interface

The entire interface between Eclipse and the NL4AC system is implemented in
the NL4AC/Eclipse component. The component introduces a new file type, the
.corr file, which is an XML document containing, in addition to identification
and other administrative data, three textual elements: the NL description of the
desired correlation (tezt), an optional set of additional designations (glossary)
which list names and synonyms for special entities in the domain (e.g., alternate
names for a given host or application), and an optional set of definitions which
allow expert users to define additional fragments of the accepted language (e.g.,
jargon or concise abbreviations). In basic use, only the text part is needed, that
is, users need not see or modify the glossary and the definitions.
The component also provides the following extensions:

e A “new file” wizard to create new .corr files from a template;

e A file editor which allows users to edit the contents of .corr files; the
editor offers three tabs for editing, respectively, the text, the glossary and
the definitions of a document.

* Ref to JNI

o A builder* which uses the CIRCE engine to parse and analyze the text, and
synthesize corresponding Java code fragments, which are then injected in
a predefined template to obtain the full code for a correlator.

e A class of problem markers, to report about parsing and validation prob-
lems found during the build; these markers are p ently displayed in
the user interface by the Eclipse infrastructure.

e A project nature, which connects a project to the builder (lacking this
connection, .corr files are treated as regular text files).

e An action contributor, which adds various Ul elements (including pop-up
menus entries and toolbar buttons) to perform various operation such as
toggling the NL4AC nature of a project, dumping debug information, etc.

3.2.3 Delegating Log Correlator

The Delegating Log Correlator implements a basic log correlator which simply
delegates the actual correlation to a different class, namely the correlator class
automatically generated from the natural language text. The delegate class’
bytecode is loaded dynamically at each instantiation through a custom class
loader; the latter is notified by the NL4AAC/Eclipse interface builder when a new
correlator class is generated.

Loading of the newly generated class is postponed until actual use by adopt-
ing a lazy notification/loading policy. In particular, the NL4AC builder notifies
the Delegating Log Correlator of the availability of a new version of a synthe-
sized correlator class as soon as generation of the Java code is completed. The
class is actually loaded later on, when the TPTP instantiates the Delegating
Log Correlator as part of the creation of a new correlation.

It is worthwhile to remark that this scheme implies that at any given mo-
ment, only one correlator can be tested through the Delegating Log Correlator.
This is not a problem in typical usage, and furthermore it is necessary due to
the lack of any form of explicit parameterization of correlations in the TPTP
framework and UI.

3.2.4 Packaging

The four components of NL4AC are packaged in two distinct plug-ins*, as shown
in Figure 3.

The CICO parser, the CIRCE subsystem and the NL4AC/Eclipse interface
are contained in the main plug-in it.unipi.di.nl4ac, which provides most of
the features. In addition to the executable native and Java code for the various
components, this plug-in also includes configuration files used for customizing
the system. The latter include resources for configuring the language parsing

4In Eclipse terminology, a builder is a software component which goes over a document
to generate any derived element; compilers and pre-processors are typically implemented as
builders.

* We may want to drop
this part

spogliani
Note
io sare i più diretto dicendo che si tratta dell'editor implemntato da Eclipse

circe ni 4ac
g A [] [] []
[] editors [ael egation
=
3 S
ker nel

NL4ACClassLoader
—
e
cicod.dil

AN
N
Plug-in descriptors NL4AC.delegatingCorrEngine plugin

it.unipi.di.ni4ac plugin

System glossary corr templates

MAS rules

|

java templates

Support Templates Teons

Figure 3: Packaging structure of the NL4AC system.

and analysis steps (in the Support folder), templates used to create new NL
correlation resources and to generate Java code (in the Templates folder), and
the CIRCE library of modules for the embedded expert system (see [2] or [3] for
details on these modules).

The Delegating Log Correlator, together with the associated lazy class loader,
are contained in a separate Eclipse plug-in whose plug-in descriptor specifies the
needed extensions to the TPTP so that this plug-in is recognized as a correlator
by the TPTP.

3.3 Operations

In this section we illustrate how the various components of the NL4AC system
interact to realize the main operations offered to the user. Major operations are
described through a UML-like sequence diagram® and commented with reference
to their user interface.

3.3.1 Creating a new correlation file

Creation of anew . corr file (see Figure 4) is invoked through the usual New menu
entry by selecting the N1 Correlation creation wizard. The wizard presents
the user with a dialog asking for certain parameters (e.g., the name for the new
NL correlation), and when all parameters have been validly collected, initiates
the creation process.

.corr files are created based on a template which can be a standard one,
provided with the plug-in, or a custom one, which in turn can be user-specific
or site-wide (possibly prepared by an administrator). Once the template is
obtained, a file with the given name and contents is created in the workspace,
and an instance of the appropriate editor is opened on the new file (see Figure 5).

5These diagrams are to be considered informal in nature; we will take some notational
liberty in order to simplify the presentation.

spogliani
Note
A cosa serve il template? Come puo' facilitare la vita a chi crea la correlazione?
Fai degli esempi, anche molto succinti...

spogliani
Note
Fai vedere anche un screenshot del workspace di Eclispe con il .corr che é stato creato all'interno di un Proejct

NL4AC New NL4AC internal Workspace
file wizard resource loader (Resource mgr)

T
|
User |
|

New file »
>

«g-Beguest params
<

— — Paams - _pp]

- Jemplate~ — :D

I
|
|
|
|
|
|
|
|
|
|
Create tesaurce !

Yy

|
Qpen editor
T

| | -

Figure 4: The user invokes the NL4AC New File wizard.

e e 5
= —
Rl < L Correlation.corr x| SELIENREE GRS ‘ =0
z An

wCorrelate errors with messages about root or about cmd.exe.
a1l messages correlate with messages with the same localInstanceld.
l#Correlate messages where extended property tracingCheckPoint is CK85 with errors about ¢

Errors correlate with| messages with the same time and date.

)
Correlation | Glossary | Definitions

[brahlome 52\ lauadnae| Raclaration] Erear L anl

Figure 5: The editor used in the NL4AC system.

The whole creation process is consistent with the way other “New file” wiz-
ards work in Eclipse.

3.3.2 Editing a .corr file

Once a correlation document has been created, editing occurs in a standard tex
editor within the Eclipse IDE (Figure 5). English sentences are written down,
specifying which records or events have to be correlated. In the course of the
editing, several facilities are provided to simplify the task:

e Syntax coloring is performed by implementing a dynamic lexical ana-
lyzer which accesses the system and document glossary (with appropriate
caching to reduce overhead) and compares typed text with terms from the
glossaries. In addition, quoted text, comments and directives (see [4] for
details) are highlighted with different colors.

e Completion is obtained similarly by presenting the user with all terms
from the glossaries starting with the current prefix (Figure 6). The CICO
parser supports features like speculative tagging which would allow more

10

spogliani
Note
Non é tanto uno "statnd text editor", ma é "LO standard text editor" di Eclipse

Errors correlate with messages with the same time and date.

Correlate records where ay

availability disposition

Correlationi Glossary'i Definitiony availability

||[:'_ Problems E:g. ‘JBVadOCiDEC available

0 errors, 0 warnings. 0 infos (Filtg availableSituation

l . I Description

Figure 6: Interactive completion assists the user in writing correlations.

Correlate errors about "disc' ith messages from raidserver.

[fatal event about disc correlate with event from raidserver |

Figure 7: Real-time paraphrase shows how the system has interpreted a sen-
tence.

sophisticated forms of completion to be implemented, but these features
are not exposed to the user in the current release.

e Text hovering is used to present the user with a paraphrase of the current
text. When the mouse pointer hovers over a sentence, the CICQO parser is
invoked on the corresponding text, and a linearized form of the returned
parse tree is shown to the user (Figure 7). In practice, this provides a way
to get feedback, as a paraphrase, on how the system interprets a given
sentence. It can be noted that the paraphrase is based on the current text
in the editor, not on the version stored in the workspace, so the feedback
can be obtained in real-time without any need to save the document.

3.3.3 Saving a .corr file

When the user saves a modified .corr file, a complex chain of events is fired
(see Figure 8). As soon as the editor saves the modified resource into the
workspace, the latter notifies all registered builders for the project which, if
the project has the NL4AC Nature, include the NLAAC Builder. The builder
reacts by retrieving the new NL text for the correlation, passing it to the CIRCE
kernel, and requesting again to the CIRCE kernel that the corresponding
Java code be recomputed. As soon as the kernel has recomputed the Java code
corresponding to the NL text in the saved file, the builder creates a new Java
class with that code, and notifies the (lazy) Delegating Class Loader that a new
version of the class is available. If CIRCE has reported any parsing or validation

11

¢l

Q a1n3r g

"9[y IX0D* © 0} SOSURYD 0ARS I9SN O,

Create by ;Pr’ndb for cla:

NL4AC .corr Workspace NL4AC Circe Cico Circe Circe NL4AC internal Delegating Java
editor (Resource mgr) builder kernel parser modelers views resource loader class loader builder
T T T T T T T T T T
I	I			I	
1	I			I	
1	I			I	

D—-"@L> | \ | \ \ \ | | |
Fsmam>|j Natify changep, | | | | | | | |
I Qetrieve cesource | 1 I I I 1 I I
I			I			
—caur contentsp. Settext g						
I D			I			
! I Request cade giewl 1 Retrieve glosshry & MAS nles	>l 1 1					
! e — - - = b - - —csadansaes < 4 o oo L						
I	—an"'m’?]:l I I I I I					
I 1 [ag2) tuple-spact I I I I I						
I 1	——— Compute models g		I I			
! ! e —Augmented wple space — — Jj ! ! ! !						
! ! Compute code view ! - : : : :						
I T T e ﬁr						
I						
I € = = — == Jawacode - o o~ [Qpseary & NASzs \ \						
I						
	_Geate Jova cass 2 code- L \ .	\ \				

Notify of new cla »-

| |_| T T T T T Lol B | |
| N N Natify change N N " >
I | .eauasx.mh]wjj !
1 lgBrablems— 1
| |
|
|
|

!
T
|
!
!
|

|
!
!
T
|
!

Correlation name is "Test Correlation 3".
Errors correlate with significant messages with the same time and date.
Hide uninteresting messages.

Correlation | Glossary Definitions

[£/ Problems 52 . Javadoc Declaration | Error Log

0 errors, 2 warnings, 0 infos (Filter matched 2 of 10 items)

| |Description Resource In Folder
& Ignored "significant” NLCorrelation.corr NL4AC Test 3
& Incomplete sentence, resulted in "hide uninteresting <SELECTION= " MNLCorrelation.corr NL4AC Test 3

Figure 9: A report of problems found in the analysis of a correlation text.

problem with the text, corresponding problem markers are set on the .corr @
resource (Figure 9).

Moreover, upon creation of the class the Java builder is notified by the
resource manager, so that the new class is compiled in the background, and the
corresponding bytecode is stored in the workspace (ready to be loaded, possibly,
by the Delegating Class Loader at some future time).

To generate the Java code, the CIRCE kernel first retrieves the system glos-
sary and parsing rules from the plug-in’s resources; merges them with those
provided in or referenced by the .corr file, and then invokes the CICO parser
to obtain a parse tree (encoded as a tuple space, as customary in the CIRCE
architecture) for the given text. This tuple space is then augmented by invok-
ing CIRCE’s expert, system modules, or modelers, which provide the intensional
knowledge of the domain needed for code generation; the augmented tuple space
is then finally passed to the code generation view (itself a module from CIRCE’s
library) which injects the generated code into the chosen template retrieved
from the plug-in’s resources. The net result of this process is the complete
source code for a Java class, which is returned to the builder and then used to
create the class in the workspace as described above.

3.3.4 Testing a correlation

To test a newly developed correlator (see Figure 10), the user creates a new @
correlation based on the Delegating Log Correlator. When the TPTP invokes

the correlate() method of this correlator, the actual correlation is delegated

to the newly developed class, which is loaded dynamically through a custom

class loader. The class loader loads the designated class (as established at the
“Notify availability of new class” step in Figure 8) directly from the workspace,
without employing any form of caching, which guarantees that the latest version

of the class under development is loaded every time. Loading of all other classes

is delegated to the parent class loader (which is typically the Eclipse standard

class loader).

13

spogliani
Note
sarebbe bello far vedere uno screenshot dell'editor di Eclipse con dei markers di errori con relativo tooltip

spogliani
Note
devi spiegare che "create a new correlation" é un artifatto del TPTP.... magari con uno screenshot

TPTP Delegating Delegating Workspace
Log Correlator Class Loader (Resource mgr)

T T T

Ir jate new clagg,.
-

| g—New.class bytecode —

create:

NL4AC
synthesized
correlator

\

|~ Newclass ef - |

1
1
1
o
E} couelate() -
»
!]
| |
! !
! I
! I
I I I
! I I
! I I
! I I I
! I I I T
: | I corelate() |
I | ‘ >
I I I I I_|
| | T T — [P 01 (<1F-111o T N
! [j<_ —Carrelation — — L | ! [!
! I
E] T I
I I
I :

| |
| |
! !
Figure 10: The user tests a newly developed correlator.

3.4 Language

The language recognized by the NL4AC system is tailored to express correla-
tions, i.e. to recognize specific patterns of occurrence of events, as reported in
the various log files. Each sentence describes a condition that, if satisfied, will
establish a correlation between two log records. Different sentences are consid-
ered alternatives; in other words, conditions expressed by different sentences are
or'ed together in the final correlation.

Each sentence has a structure of the form

selection correlate with selection.

where each selection selects a subset of all records, typically based on the values
of some field in their CBEM representation. All CBEM fields are supported, and
can be referenced by their original name or by a number of common synonyms;
further synonyms can be defined in a user glossary.

A number of relational operators are supported, including equality, greater
than, greater or equal, less than, less or equal, inequality, substring matches,
temporal ordering, etc. Conditions can be composed via logic operators (e.g.,
and and or). Abbreviated expressions can be used or defined (via definitions)
for common conditions. For example, warnings can be used as a short-hand
for events where severityLevel is warning, and events from Apache as a short-
hand for events where applicationld is Apache. The special form “attribute of
the other event” is used to bind to the value of the same attribute in the event
which is being tested for correlation. Fuller details about the language defined
by the initial rule set (which, as we will see in Section 3.5, can be extended by
administrators and users) are provided in the companion report [1].

14

It is important to stress that the CICO parser used by the NL4AC is geared
towards parsing natural language, not formal languages. Hence, the brief indi-
cations given above should not be considered as the definition of the recognized
language. Rather, CICO works in an information extraction perspective: it
tries to extract meaning from a text, and accepts imperfect matches (due, for
example, to the presence of additional text, or word order inversion, or even
missing parts), hence the accepted language, although controlled in a sense, can
be defined only fuzzily. As an end user, looking at the paraphrase that is shown
by the editor when the pointer hovers for a second over a line is the best way
to check the way the text has been “understood” by the system (see Figure 7).

3.4.1 An example

Let us assume that in a departmental IT infrastructure, the main web server is
hosted on a machine called “margot”, the database is hosted on “tera”, and there
are a number of other applications and subsystems running on these and other
machines. We want to correlate messages referring to the web server, from
any applications, with errors reported from the host “margot”, and messages
referring to the database (or “db”) with warnings from the host “tera” (we know
that “tera” is more fragile, so we want to catch warnings in addition to errors).
Moreover, as a general rule we want to cluster together groups of messages
coming from the same application in a given time span (say, in the previous
5 minutes) before any error. These business rules can be plainly expressed by
writing in the NL4AC editor

Correlate errors from margot with messages about "web server".
Warnings from tera correlate with messages about "database"
or about "db".

Errors correlate with events with the same ApplicationID in
the previous 5 minutes.

From this exact text (or from any of a number of alternative forms), the NL4AC
can generate the Java code for a correlator satisfying the stated business rules.
More importantly, the business rules themselves can be tested interactively, to
validate them, and any refinement can be tried out immediately by editing the
text.

3.5 Customizability

Autonomic technology has to be tailored to each specific IT environment to be
most effective, and log analysis is no exception to this general rule. There is
ample scope for customization in the NL4AC system, with a view to providing
to end-users a system that has been, or can be, adapted to their specific needs.

Customization in NL4AC can happen at various levels, which we will describe
briefly in the following (full details are in [5]).

e The end-user can customize the language accepted by the system by writ-
ing definitions, which are lax rewriting rules used by the CICO parser in

15

spogliani
Note
io descriverei meglio cosa succede "logicamente" quando ciascuna di queste 3 linee é parsed... e, SOPRATTUTTO, come avviene la comosizione delle 3 righe in un UNICO correlatore.

Scritto cosi' sembrano 3 situazioni diverse che accidentalmente si trovano una appresso all'altra

addition to basic parsing rules. For example, a end-user could write a
definition like:

CASES WHEN x/HOST IS DOWN — WARNINGS FROM PINGER ABOUT
$x.

After such a definition, the user can use the new form (on the left side
of the arrow, where z can be substituted by any host name) with the
semantics given by the form on the right side. In other words, a sentence
like

Correlate cases when margot is down with messages about
"web server".

generates the same correlator as the sentence

Correlate warnings from pinger about margot with messages
about "web server".

Any number of definitions can be provided, tailoring the language accepted
by the system to the specific needs and habits of each user. The parser
will combine the definitions with its own internal rules, applying them as
needed to obtain a parse tree for the sentence.

e A site administrator or power user can further customize the system by
preparing specialized templates, which can incorporate definitions, des-
ignations (i.e., sets of synonyms for local concepts, e.g. host names) or
even skeleton sentences. These templates can then be selected by end-
users upon creation of the correlation document (as already discussed in
Section 3.3.1). Moreover, an administrator can modify the Java code
templates which are used to generate the final correlator. Different code
templates can provide, for example, varying levels of optimization or user

feedback.

e A solution developer can modify the basic set of parsing rules used by the
parser, thus changing in arbitrary ways the language recognized by the
parser. It should be noted that, while definitions provide new syntax for
the same semantics, basic parsing rules can describe language forms whose
semantics could not be expressed by pre-existing rules.

A developer can also write new modules for the modular expert system
(the CIRCE component of the architecture) used by NL4AAC. These modules
can be used to encode the semantics for new rules, and how they should be
translated into Java code, or to provide additional services like validation
of the text, cost estimation for the corresponding correlator, etc.

We believe that only by providing ample opportunities for customization, and
at different times and levels of competence, can specialized solutions be applied
successfully to different organizational and technical situations.

16

4 Industrial validation

To write based on feedback from IBM labs.

5 Related work

To write or maybe to drop I could not find relevant references, different user
interfaces for log analysis seems to be a not well-researched topic.

6 Conclusions and future work

Autonomic technology bears big promises, but the issue of how users can best
interact with autonomous systems is still rather underresearched. In this pa-
per we have investigated the application of natural language interaction with
autonomic systems, focusing especially on log parsing and analysis.

Our experiences with the industrial usage of a prototype implementation,
the NL4AC system, have shown that ...*

More work remains to be done. Besides improvements in the language recog-
nition techniques, other interesting opportunities concern the way occurrence of
patterns of interest is reported back to the user. Currently, correlations are
shown as groups of arrows in a sequence diagram. This diagrammatic represen-
tation may be good to provide an overview, but specific patterns may be better
reported in natural language, in the same style as the sentences used as input.
A clear, short textual form such as

An error about "web server" occurred and margot is down.

is easier to interpret even for non-specialized personnel, and moreover can be
effectively transmitted (e.g., paged) to an off-site operator. We believe that
improvements in user interfaces for autonomic system will significantly increase
the penetration of autonomic technology in a wider range of environments.

References

[1] Vincenzo Ambriola and Vincenzo Gervasi. NL4AC: Primo rapporto tecnico.
Technical report, May 2005. (in Italian).

[2] Vincenzo Ambriola and Vincenzo Gervasi. On the systematic analysis of
natural language requirements with Circe. Automated Software Engineering,
2005. (to appear).

[3] Vincenzo Gervasi. Environment Support for Requirements Writing and Anal-
ysis. PhD thesis, University of Pisa, March 2000.

[4] Vincenzo Gervasi. The Cico domain-based parser. Technical Report TR-01-
25, University of Pisa, Dipartimento di Informatica, November 2001.

17

* depends on lab report

[5] Vincenzo Gervasi. NL4AC: Eclipse plug-ins technical description. Technical
report, January 2006.

[6] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
IEEE Computer, January 2003.

* We need clearance
from IBM to refer the
two Technical Reports.

18

Contents
1 Introduction

2 The current scenario

2.1 Autonomic problems oL oL
2.2 Current technology
2.3 Current processo

3 The NL4AC approach

3.1 Features description oL
3.2 Architecture descriptiono
3.2.1 Logical components
3.2.2 NL4AC/Eclipse interface
3.2.3 Delegating Log Correlator
3.24 Packagingo
3.3 Operations
3.3.1 Creating a new correlationfile
3.3.2 Editinga .corrfile
3.3.3 Savinga .corrfile L.
3.3.4 Testing a correlation
3.4 Language
341 Anexampleo
3.5 Customizability oo

4 Industrial validation

5 Related work

6 Conclusions and future work

19

—

W W N -

© 0000 ~~1IO O W,

