
9
● Web applications

– Distributed architecture
– Key technologies

● DOM
● XML
● AJAX

Web applications

● Definition:
– A form of distributed application in which users

access the system through a browsing context
and (part of the) message passing is realized over
an HTTP transport

● Distributed computation: web browser can execute
code (typically, Javascript)

● Distributed memory: each client has its own state
● Message passing: HTTP as a message-passing

protocol

Computation
+

Memory

Computation
+

Memory

Message
passing

Web applications

● Components
– At least the user-front layer is made of

components hosted inside a web browser or a
similar browsing context

– At least the next subsequent layer is made of web
server components, that can talk to web
browsers

● Not necessarily a full-fledged web server or application
server

● “Micro” HTTP servers are common

– Further components as deemed necessary

Web applications

● Connectors
– The connectors between user-front and the first

server layer are based on HTTP transport
● First message must be an actual HTTP request
● Further messages could be any format... but HTTP is

still the preferred method

– Connectors between the server layer and further
nodes could use different transports

● Common case: JDBC/ODBC to connect to a DBMS

– User-front nodes could use additional techniques
● Flash, Java Applets, ActiveX ...

Web applications

● Mash-up
– One client can

access many servers

● Server-centric
– Many clients can

access a server

Room rent
service

Google Maps

Your bank

Facebook

Web applications

● Hosted application
– Multiple clients

access a server, but
are independent of
each other

– Essentially, a
traditional client-
server architecture

● Fully distributed
– Endless

combinations!

Typical 3-tier

● Most web applications are implementations of
the three-tier architecture
– Most computations on the web server (application

server)
– Some UI-related computations on the client
– Important data on a DBMS
– Some UI-related state on the client

Web applications: Other options?

● Clients are asymmetric
– A web browser is not a web server

● P2P architectures not possible

● Clients are not compositional
– scalable architectures not possible

● No Pipe & filter
● No inbound/outbound tree, no fat tree

● Custom architectures
– Behind the user-front layer, everything goes!

Custom architectures

Any back-end
architecture

HTTP Transport

● Browser sends a
HTTP Request to
Web Server

● Web Server sends a
HTTP Response to
Browser

HTTP/1.0 200 OK
Date: Fri, 31 Dec 1999 23:59:59
GMT
Content-Type: text/html
Content-Length: 1354

<html>
<body>
<h1>Title</h1> ...
</body>
</html>

HTTP/1.0 200 OK
Date: Fri, 31 Dec 1999 23:59:59
GMT
Content-Type: text/html
Content-Length: 1354

<html>
<body>
<h1>Title</h1> ...
</body>
</html>

POST /path/script.cgi HTTP/1.0
From: frog@jmarshall.com
User-Agent: HTTPTool/1.0
Content-Type: application/x-www-
form-urlencoded
Content-Length: 32

home=Cosby&favorite+flavor=flies

POST /path/script.cgi HTTP/1.0
From: frog@jmarshall.com
User-Agent: HTTPTool/1.0
Content-Type: application/x-www-
form-urlencoded
Content-Length: 32

home=Cosby&favorite+flavor=flies

GET /path/part/of/url.html HTTP/1.0GET /path/part/of/url.html HTTP/1.0

HTTP Transport

● Most commonly, HTTP is transported itself
over TCP/IP
– One could also use other protocols – but rare

● Stateless: each Request/Response pair is a
complete communication
– Any state-related information must be explicitly

transported in the request/response
● Cookies, session-IDs, user-IDs, …

● All communications initiated by the client

Key technologies for web apps

● Graphical user interface hosted in a web
browser
– HTML, CSS

● Running code in a web browser
– Javascript
– Browser plug-ins

● Java applet
● Flash
● ActiveX components

Key technologies for web apps

● Graphical user interface hosted in a web
browser
– HTML, CSS

● Running code in a web browser
– Javascript
– Browser plug-ins

● Java applet
● Flash
● ActiveX components

Linking the two sides:
Document Object Model (DOM)

Key technologies for web apps

● Communication via HTTP
– HTML FORMs
– Program-controlled HTTP requests
– General-purpose XML requests over HTTP

● Gluing it all together
– AJAX: Asynchronous Javascript and XML

● Develop client- and server-side separately

● More advanced frameworks
– GWT: Google Web Toolkit

● Generates client- and server-side from same source

Document Object Model

● Standard
library of
Javascript
classes

● One object
for each
node in the
Document

Document Object Model

<html>
<head>
<title>Trickier nesting, still</title>
</head>
<body>
<div id=”main-body”>
<div id=”contents”>
<table>
<tr><th>Steps</th><th>Process</th></tr>
<tr><td>1</td><td>Figure out the root
element.</td></tr>
<tr><td>2</td><td>Deal with the head
first,
as it’s usually easy.</td></tr>
<tr><td>3</td><td>Work through the body.
Just take your time.</td></tr>
</table>
</div>
<div id=”closing”>
This link is not active, but if it were, the answers
to this
would be there. But do the exercise anyway!
</div>
</div>
</body>
</html>

● When parsing
an HTML
page, the
browser builds
a DOM tree

● HTML (and
XML) are
natural
encodings of
an attributed
tree

Document Object Model
● Each node in the HTML tree has a

corresponding object in the DOM tree
● FORM nodes hold I/O widgets
● UI events can trigger the execution of code

Document Object Model

Three special objects
● Document – represents the whole HTML

document (“page”)
● Window – represents the browser

window or tab containing the Document
● Navigator – represents the whole

browser (i.e., Chrome or Firefox)

Example

<form name="ex" method="POST"

onsubmit="alert('onsubmit');return false;">

<div align="center">

<select name="sel" size="1"
onchange="alert('onchange')">

<option value="1" selected="selected">1</option>

<option value="2">2</option>

<option value="3">3</option>

</select>

<input type="submit" value="submit" />

</div></form>

UI events supported (HTML 5)
All HTML elements, Document

object, Window object
All HTML elements except
BODY, Document object

Window object

onabort onblur onafterprint

oncanplay onerror onbeforeprint

oncanplaythrough onfocus onbeforeunload

onchange onload onblur

onclick onscroll onerror

oncontextmenu onloadstart onfocus

oncuechange onmousedown onhashchange

ondblclick onmousemove onload

ondrag onmouseout onmessage

ondragend onmouseover onoffline

ondragenter onmouseup ononline

ondragleave onmousewheel onpagehide

ondragover onpause onpageshow

ondragstart onplay onpopstate

ondrop onplaying onredo

ondurationchange onprogress onresize

onemptied onratechange onscroll

onended onreadystatechange onstorage

oninput onreset onundo

oninvalid onseeked onunload

onkeydown onseeking onsuspend

onkeypress onselect ontimeupdate

onkeyup onshow onvolumechange

onloadeddata onstalled onwaiting

onloadedmetadata onsubmit

● Useful events
– change
– click
– drag*/drop
– key*
– mouse*
– submit
– load/unload
– error

Traditional web “application”

● So-called “post-back” model
– Some user action triggers an application event
– The application posts the event (as a FORM) to

the web server
– Application code on the server receives the data

from the form, and performs whatever action was
requested

– The server generates a whole new web page,
updated according to the user action

– The new web page is shipped to the browser
– Rinse and repeat

Traditional web “application”

● So-called “post-back” model
– Some user action triggers an application event
– The application posts the event (as a FORM) to

the web server
– Application code on the server receives the data

from the form, and performs whatever action was
requested

– The server generates a whole new web page,
updated according to the user action

– The new web page is shipped to the browser
– Rinse and repeat

Terribly wasteful!

● An entire round-trip (client to server and
back) for each user action → high latency

● An entire Document sent as response for
each user action → low throughput

AJAX-style application

● So called “differential update” model
– Some user action triggers an application event
– The (client-side) application's code crafts a

message (in XML) to be sent to the server
– The server receives the messages, performs the

action, and generates an arbitrary reply message
– The reply is received by the client-side code, which

uses it to update the current page (updating)
– Rinse and repeat

AJAX-style application

● So called “differential update” model
– Some user action triggers an application event
– The (client-side) application's code crafts a

message (in XML) to be sent to the server
– The server receives the messages, performs the

action, and generates an arbitrary reply message
– The reply is received by the client-side code, which

uses it to update the current page (updating)
– Rinse and repeat

Much more efficient!

● Simple updates can be performed locally,
no need to go to the server → low latency

● Only the changed data are sent back to the
client → high throughput

Traditional vs. AJAX

● Typical AJAX
applications
rely on a library
for routine
tasks

● This “AJAX
engine”
supports
serialization
of objects
(JSON)

Coding AJAX (client-side)

● Communication between client and server is
performed through an XMLHttpRequest
var req;
req = new XMLHttpRequest();
...
req.onreadystatechange = function() {

// callback function, will run when server
// replies to the message

}
...
req.open('GET', url, true);
req.send(args); // req is sent to server

cr
ea

te
re

cv
se

nd

Asynchronous!

Coding AJAX (client-side)

● In the callback function, the
server response can be
extracted from the request
object
function() {

if (req.readyState === 4) {
if (req.status === 200) {

alert(req.responseText);
} else {

alert('HTTP error!');
}

}
}

Stronger equality
without type

coercion

0 = uninitialized
1 = loading
2 = loaded
3 = interactive
4 = complete

Coding AJAX (client-side)

● In the callback function, the
server response can be
extracted from the request
object
function() {

if (req.readyState === 4) {
if (req.status === 200) {

alert(req.responseText);
} else {

alert('HTTP error!');
}

}
}

Coding AJAX (client-side)

● In the callback function, the
server response can be
extracted from the request
object
function() {

if (req.readyState === 4) {
if (req.status === 200) {

alert(req.responseText);
} else {

alert('HTTP error!');
}

}
}

HTTP status codes
2xx = success
200 = ok
201 = created
202 = accepted
204 = no content
…
3xx = redirection
301 = moved
…
4xx = client error
401 = unauthorized
403 = forbidden
404 = not found
…
5xx = server error
501 = not implemented
503 = unavailable

Coding AJAX (client-side)

● In the callback function, the
server response can be
extracted from the request
object
function() {

if (req.readyState === 4) {
if (req.status === 200) {

alert(req.responseText);
} else {

alert('HTTP error!');
}

}
}

Whatever the server
sent in response to the

request

Coding AJAX (client-side)

● The responseText can be used in any way the
programmer sees fit

● Some typical uses
– ResponseText contains a fragment of HTML

● The client-side code inserts the fragment at an
appropriate position in the current page

– ResponseText contains a serialized object
● The client-side code deserializes it and uses it in some

way

Document.getElementById(mountPoint).innerHTML=req.responseText

Using JSON with AJAX

● JSON (Javascript Serialized Object Notation /
JavaScript Object Notation) is a simple
standard for representing objects as strings

● A Javascript object is a map: key → value
● Values can be

– Basic types: integers, floats, strings, booleans...
– Objects: a nested map
– Functions: executable code (λ-expressions)
– Arrays of the above
– null

Not in JSON!

Using JSON with AJAX

{
 "firstName": "John",
 "lastName": "Smith",
 "age": 25,
 "address":
 {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021"
 },
 "phoneNumber":
 [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "fax",
 "number": "646 555-4567"
 }
]
 }

● JSON is the native
format for object
literals in Javascript

● Hence, if p is a string
containing the text
on the left, we can
write
var john =
eval('('+p+')');

Using JSON with AJAX

● Some care must be taken with escaping random
strings to be passed to eval()

● Better alternative: use the JSON utility object
– Has a method parse() specifically for JSON data

var result = {};
var req = new XMLHttpRequest();
req.open("GET", url, true);
req.onreadystatechange = function () {
 if (req.readyState === 4 && req.status === 200){
 result = JSON.parse(req.responseText);

 // do something with result
 }
};
req.send(args);

Coding AJAX (server-side)

● To a web server/application server, HTTP
requests coming from an AJAX application
are business as usual

● Form-encoded input is retrieved from the
HTTP Request, processed, and results are
sent back in an HTTP Response

● All usual technologies are applicable
– CGI, Java Servlet, ASP.NET, JSP, …
– Apache, Tomcat, ad-hoc servlets, …
– Responses could even be static files!

Example: MVC

● Browser has the
View
– As a DOM = HTML

document or part
thereof

● Browser has the
Controller
– As Javascript code,

fired by event
handlers

● Server has the
Model
– The actual data

● In-memory → 2-tier
● In a DBMS → 3-tier

Exercise

Can you spot a problem
with MVC on a typical

Web Application?

Exercise

Can you spot a problem
with MVC on a typical

Web Application?

Example: MVC

● Active mode
– Changes in the model

“spontaneous” or 3rd party

● Passive mode
– Changes in the model

initiated by the Controller

Example: MVC

● Active mode
– Changes in the model

“spontaneous” or 3rd party

● Passive mode
– Changes in the model

initiated by the Controller

Only the client (Browser) can
initiate a communication

Cannot have active MVC!

Only the client (Browser) can
initiate a communication

Cannot have active MVC!

Example: MVC

● However, we can use a
trick!
– AJAX is asynchronous
– Simply keep a request

“out”, and implement the
update operation as a
response to that request

– On receiveing an update,
the View must always
send out another
waitForUpdate request to
the Model

Problems with AJAX

● Browsers are still only partially standardized
– Life can be hard...
– Writing client-side Javascript code capable of

running on all and every browser is not easy
● Often, lots of “IFs” and ad-hoc work-arounds

● AJAX requires writing a substantial amount of
tricky code by hand
– Requests handling
– DOM manipulation
– JSON marshalling/unmarshalling

A more complete solution: GWT

● GWT = Google Web Toolkit
● Write Java code

– A compiler produces highly optimized Javascript
code “corresponding” to the source Java code

– A different compiled module for each supported
browser/version

– The server will serve to each user the version
optimized (and bug-compatible) for his/her
particular browser

● Includes mobile environments, e.g. iPhone or Android

A more complete solution: GWT

● In favour
– Rich set of HTML+Javascript widgets
– Extremely robust implementation of communication,

serialization, synchronization, etc.
– Highly efficient, highly portable, future-proof
– Good development environment

● Embedded in Eclipse, with graphical GUI designer

● Against
– Yet another full set of APIs and frameworks to learn!
– Proprietary technology – no standardization

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37
	Pagina 38
	Pagina 39
	Pagina 40
	Pagina 41
	Pagina 42

