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● Network programming

– Addressing
– Using raw sockets

● TCP
● UDP
● Multicast

– Using RPC via RMI
– Using web services



Addressing

● In distributed systems, efficiently addressing 
the right host is critical

● Many request brokers perform some form of 
lookup procedure
– e.g., DNS lookup, RMI registry, CORBA naming 

service, Universal Plug&Play (UpnP)
– “hidden” costs!

● In most cases:
– IP addresses (independent from the media)
– Media-specific addresses (e.g., Bluetooth)



IP Addressing

● Traditional IP (v4) addressing
– 32 bits, 4 groups of 8 bit each
– Notation: decimal-dotted, 131.114.6.36

● Extended IPv6 addressing
– 128 bits, 8 groups of 16 bit each
– Notation: hex-:, 2000:fdb8::1:00ab:853c:39a1

● “0”s can be omitted or skipped

● Private networks
– Addresses can be assigned at will, as long as 

externally visible addresses are registered



IP Addressing

● Each host can have multiple interfaces
– Most often, 1 interface = 1 network card or chip

● Each interface has one IP address
– Configurable

● Each interface has one physical address
– Usually not configurable – MAC address
– Typical, but not strictly needed

● Each IP address can be referenced by multiple domain 
names
– Configurable
– A domain name can resolve into multiple IPs



IP addressing

● A particular process running on a given host 
is identified by a port number
– port numbers are 16-bit unsigned integers
– 0-1023 reserved for OS use
– 1024-65535 available for user applications
– It is the process' responsibility to bind to a 

particular port number
– Port numbers can be agreed-upon (e.g., 80 for 

HTTP) or negotiated or communicated across 
servers



Direct addressing in a PN

● A system could use a directly-encoded 
address space

● Examples
– Grid topology

● 64 hosts, organized in a 8x8 square grid
● Host at coordinates x,y in the grid has address 

192.168.0.( x<<3 | y )

– Ring topology
● 20 hosts, organized in a ring
● Host x has neighbours (x-1)%20 and (x+1)%20
● Each host is at IP address 192.168.1.x



Direct addressing in a PN

● However, direct addressing suffers severe 
limitations
– It is strictly linked to a fixed topology

● Low scalability, low flexibility
● Harder to maintain – need exactly that particular 

addresses assigned to work

– It is global in nature
● No dynamic discovery

– It only works in local networks
● Hard to distribute geographically



Domain name system

● A distributed application could use DNS 
names to refer to other hosts

● In favour
– Easily extensible, dynamic

● Against
– Lookup costs

● Reduced by caching: the “working set” of a single host 
is typically small

– Administration costs
● Need to run your own DNS server



IP addressing in Java

● The class InetAddress represents network 
addresses

● InetAddress has static methods to
– Map names to addresses
– Map addresses to names
– Discover your own address
– Check various properties of addresses
– Compare addresses for equality 



InetAddress

● public static InetAddress[] 
getAllByName(String hostname)
throws UnknownHostException

● public static InetAddress 
getLocalHost()
throws UnknownHostException

● public String getHostName()
● public byte[] getAddress()
● public String getHostAddress() 



InetAddress

● InetAddress uses an embedded cache to 
avoid unnecessary DNS lookups

● For “a.b.c.d” numeric addresses, no lookup is 
performed

● For “f.q.n” names, both positive lookups and 
negative lookups are cached
– Positive lookups are cached forever
– Negative lookups are cached for 10 seconds

● Configurable through properties 
networkaddress.cache.ttl and 
networkaddress.cache.negative.ttl



InetAddress - example

private static String lookup(String host) {
InetAddress node;
try { 

node = InetAddress.getByName(host);
System.out.println(node);
if (isHostName(host)) // checks [0-9.]+

        return node.getHostAddress();
else

return node.getHostName();
} catch (UnknownHostException e) 

return "non ho trovato l’host";
}



Sockets

● A socket is the data structure used to manage 
the state of a network connection in the IP

● The operating system provides calls to create, 
use, destroy sockets

● These are typically mirrored in a language-
specific library

● In Java:
– class Socket
– class ServerSocket
– class DatagramSocket



TCP: Creating Sockets

● Class java.net.Socket
– Represents a (client) Socket

● Constructors: create and connect a socket
– public Socket(InetAddress host, int 
port) throws IOException

– public Socket(String host, int port) 
throws UnknownHostException, 
IOException

– public Socket(String host, int port, 
InetAddress locaIAddress, int 
localPort) throws ...



TCP: Reading/writing from/to 
Sockets

● Each (client) Socket is associated to two 
streams, one for input, one for output

● public InputStream getInputStream( ) 
throws IOException

● public OutputStream getOutputStream( ) 
throws IOException

● You can read from and write to those streams 
through normal Java I/O methods

● Beware of buffering!



TCP: read/write example

private Socket sock;
private OutputStream os;
private InputStream is;

public TestClient(String host, int port)
throws IOException {

sock=new Socket(host,port);
os=sock.getOutputStream();
is=sock.getInputStream();

}
…

● Setting up the connection to a server



TCP: read/write example

private void sendC(byte c) throws IOException {
byte[] buf= new byte[1];
buf[0]=c;
os.write(buf);

}

private byte recvC() throws IOException {
byte[] cmd=new byte[1];
int r=is.read(cmd);
if (r==-1) throw new IOException("…");
return cmd[0];

}

● Send/recv messages (1 byte here)



TCP: Closing

● A few notable methods
– sock.close()

● Ensures the socket is closed, partially-filled buffers sent out, 
resources freed and re-usable

– sock.shutdownInput()
sock.shutdownOutput()

● Asymmetrical close – no further input/output possible

– flush(), close() on input and output stream
● Usual semantics

– sock.setSoKeepAlive(true)
● Sets the SO_KEEPALIVE flag on the socket
● Automatic periodic “ping”; if no answer, socket is reset



TCP: Closing

● Socket behaviour on close
– Sock.setSoLinger(boolean linger, int time)
– linger=false (default)

● send buffer is sent out; recv buffer is discarded
● close() is asynchronous; errors in sending are not reported

– linger=true, time=0
● Both send and recv buffer are discarded
● close() is asynchronous

– linger=true, time>0
● Send buffer is sent out; recv buffer is discarded
● Close() is synchronous; the call blocks until the data have been 

received, or timeout time has expired



TCP: Controlling the buffering

● Sock.getReceiveBufferSize(), 
sock.getSendBufferSize()

● Sock.setReceiveBufferSize(), 
sock.setSendBufferSize()

● Sock.setTcpNoDelay(boolean enabled)
– enabled=true → enables Neagle's algorithm 

(coalescing)
– enabled=false → disables Neagle's algorithm 

(transmit immediately)



TCP: Creating server sockets

● Class java.net.ServerSocket
– Represents a server socket

● Constructor
– public ServerSocket(int port) throws 
BindException, IOException

● Creates and binds a server socket that is listening 
(waiting for connections) on the given port

● Several variants exist for fine-tuning of various 
parameters

● As soon as the server socket is created, 
clients can start connecting to the server



TCP: Handling incoming clients

● The socket method accept() suspends the 
calling thread until a connection request from 
a client arrives

● At that point, accept() returns another 
(different) socket, which can be used for 
communicating with that particular client

● Typical strategies
– Create a new server thread to handle it
– Handle the client immediately, then go back to 

accept()



TCP server: example

● Creates a server

● Handles a client connection (dedicated thread)

ServerSocket ssocket;

public Server(int port) throws IOException {
ssocket=new ServerSocket(port);

}

while (!done) {
try {

Socket s=ssocket.accept();
new ServiceThread(s).start();

} catch (IOException e) { … }
}



UDP: Creating a socket

● Class java.net.DatagramSocket
● Constructors

– public DatagramSocket()
throws SocketException

● Creates a datagram socket and binds it to a system-
selected unspecified free port (usually: client role)

– public DatagramSocket(int port) 
throws SocketException

● Creates a datagram socket and binds it to the given 
port (usually: server role)



UDP: packets

● A packet of data (i.e., a single message) is 
represented by a java.net.DatagramPacket

● Double role
– Create and fill in a DP, then give to to a DS for 

sending out the message inside the packet
– Create an empty DP, pass it to a DS to store a 

received message inside the packet
● Can reuse packets or buffers for efficiency

– Essentially, DP = char array + length + offset
– Also includes info about partners' IPs & ports



UDP: packets

● Two important observations
– TCP is a connection-oriented protocol

● Identity of the partners is fixed once and for all upon 
establishing the connection between them

– UDP is a connection-less protocol
● Each and every packet must specify its sender and its receiver 

(IPs & ports)

– TCP is a stream-oriented protocol
● All traffic is a sequence of bytes, broken at arbitrary boundaries

– UDP is a packet-oriented protocol
● Each message is sent individually (no guarantees!)



UDP: packets

● Creating a packet
– DatagramPacket(byte[] buf, int offset, int 
length, InetAddress address, int port)

– Creates a packet addressed to address,port and 
holding the slice of the array buf starting at offset 
and of length length as payload

– Variants with fewer parameters exist
– Setter methods exists to set or change individual 

parameters
– Getter methods for inspecting data on an 

incoming packet



UDP: sending and receiving

● DatagramSocket.send(DatagramPacket dp)
– Will send the payload of the packet to the 

address/port specified in the packet
● DatagramSocket.receive(DatagramPacket dp)

– Will suspend until a packet is received
– Then, it will copy the payload (and the sender info) 

into the given dp and return
● As for TCP, the programmer can specify the size 

of the send and receive buffers
– Within reason - “extra” packets are discarded



UDP: example

● Sending UDP packets

InetAddress ia = InetAddress.getByName(host);

DatagramSocket ds = new DatagramSocket();

byte[] data = new byte[20];

/* fill data as needed */

DatagramPacket dp = new DatagramPacket(data, 
data.length, ia, port);

ds.send(dp);



UDP: example

● Receiving UDP packets

DatagramSocket ds = new DatagramSocket(port);

byte[] buffer = new byte[200];

DatagramPacket dp = new DatagramPacket(buffer, 
buffer.length);

ds.receive(dp);

byte[] data = dp.getData();

int len = dp.getLength();

/* use the data as needed */



Encoding of messages

● All the TCP and UDP messaging is done as 
sequences of bytes (chars)

● Various standard methods can be used to encode 
arbitrary messages as sequences of bytes
– Using ASCII strings
– Using a ByteArrayInputStream / OutputStream +

● Using DataInputStream / OutputStream (per-item)
● Using ObjectInputStream / OutputStream (serialization)

– Composing messages “by hand”
● Possibly using bitwise operators



Multicast

● Multicast = one-to-many
– A packet sent by an host is received at the same 

time by multiple other hosts on the same net
– Joining a multicast group is voluntary

● Broadcast = one-to-all
– A packet sent by an host is received at the same 

time by all other hosts on the same net
– Often used for zero-conf services

● No one-to-one connection possible
– Hence, all based on UDP



Multicast: group address

● All IP addresses in the range 224.0.0.0 – 
239.255.255.255 are reserved for multicast 
groups

● Two reserved addresses
– 224.0.0.1 = all hosts on the subnet (try ping!)
– 224.0.0.2 = all routers on the subnet (usually 

disabled by network administrators)
● Other addresses may be reserved at IANA

– e.g., 224.0.1.1 = NTP network time service



Multicast theory of operation

● An host can join one or more multicast group
● All datagram packets sent to a multicast 

group address is delivered to all hosts that 
have joined the group

● An host can leave a group at any time
● The port a packet is sent towards is not 

significant anymore
– But the receiver can still retrieve it from the packet
– Might be used to “tag” different types of traffic



MulticastSocket: example

InetAddress group = InetAddress.getByName(gr);
if (!group.isMulticastAddress()){

throw new IllegalArgumentException();
}
MulticastSocket ms = new MulticastSocket(port);
ms.joinGroup(group);
DatagramPacket dp = new DatagramPacket(new byte[K],K);
ms.receive(dp);
byte[] data=dp.getData();
int len = dp.getLength();
/* process data */
ms.leaveGroup(group);

● A multicast receiver

Subclass of 
DatagramSocket



MulticastSocket: example

InetAddress group = InetAddress.getByName(gr);
if (!group.isMulticastAddress()){

throw new IllegalArgumentException();
}
MulticastSocket ms = new MulticastSocket();
/* prepare data in d */
DatagramPacket dp = new DatagramPacket(d,d.length);
ms.setTimeToLeave(1);
ms.send(dp);

● A multicast sender

Maximum number of hops
1 = cannot leave local netword



RMI: Remote Method Invocation

● RMI is an infrastructure for causing the 
execution of methods of objects that reside on 
a different host

● The caller invokes the operation “as if” it was 
calling a method

● The callee receives the invocation “as if” it 
was simply called

● Under the hood, complex marshalling and 
object serialization is used to provide 
transparency



RMI overview

● RMI servers export 
services through a 
registry

● RMI clients can 
query the registry to 
discover services

● Once bound, clients 
can invoke methods 
of the server objects



RMI overview

● Calls are routed through a Stub (client side) 
and a Skeleton (server side)

● Remote References managed by a RRL

Method 
invocation

Message 
passing

User code
Method 

invocation



RMI: server-side API

● The server object must implement 
java.rmi.Remote
– Just a marker interface

● All server methods must declare that they 
might throw java.rmi.RemoteException

● The server object must 
– extend UnicastRemoteObject or 
– call UnicastRemoteObject.exportObject(srvrObj);

● The stub class can be created by running the 
RMI-Compiler rmic



RMI: server-side API

● To ensure that the server object is available 
from a registry
– A registry server must be running on the host

● On Linux: rmiregistry &
● On Windows: start rmiregistry 

– A symbolic name must be bound to the server 
object

● void Naming.bind(String name, Remote obj)
● void Naming.rebind(String name, Remote obj)



RMI Server example

import java.rmi.*;
public interface EchoInt extends Remote {

String getEcho(String echo) throws RemoteException;
}

● The server object interface

public class Server implements EchoInt {
public Server() { ; }
public String getEcho(String echo)  {

return echo ;
}

}

● The server object implementation

The implementation can have private 
and public methods at will, but only 

those declared in the Remote 
interface can be accessed remotely



RMI Server example

● Registration of the remote object
import java.rmi.registry.*
import java.rmi.server.*;

public class ServerActivate {
public static void main(String args[]) {

try {
Server obj = new Server();
EchoInt stub =

(EchoInt)UnicastRemoteObject.exportObject(obj);
Registry registry = LocateRegistry.getRegistry();
registry.bind("Echo", stub);

    } catch (Exception e)  { … }
}

}



RMI Server example



RMI: client-side API

● The client locates a registry
– Often – but not necessarily – the registry is located on 

the server host
● The client obtains a reference to the remote object 

from the registry
– The client must have the interface .class!

● Calls to the methods of the obtained object will 
beahave “as if” the object was local
– Tons of caveats apply

● In particular: arguments, results, exceptions are serialized!
● Remote call can fail due to network problems



RMI Client example

● Invoking remote methods
try {

Registry registry = LocateRegistry.getRegistry(host);
EchoInt stub = (EchoInt) registry.lookup("Echo");
String response = stub.getEcho(next);
System.out.println("response: " + response);

} catch (Exception e) { … }

● Notice how the client “knows” the remote 
interface, but not the implementation

● On the server, each client is a different 
thread executing the method code
– Synchronization might be necessary



Web Services

● Similar to other object distribution 
infrastructure
– e.g., RMI or Corba

● Remote operations are invoked through 
SOAP messages on top of HTTP
– SOAP: an XML-based object serialization protocol
– Services are “hosted” by a web server

● Rich semantics and types
– Services are self-described, no need to have IDL

● Slow – useful for heavy-weigth transactions



Web services in Java: server

● Modern tools use Java annotations
package server;
import javax.jws.WebService;
import javax.jws.WebService;
import javax.xml.ws.Endpoint;

@WebService public class Calculator {

@WebMethod public int add(int a, int b) { return a+b; }

public static void main(String[] args){
Calculator calc = new Calculator();
Endpoint endpoint =
Endpoint.publish("http://localhost:8080/calc", calc);

}
}



Web services in Java: deploy

● The Java compiler will recognize the special 
annotations, and generate
– A WSDL file describing the web service
– A .class file containing the compiled bytecode for 

Calculator
– Various stubs for additional “hidden” classes

● The interface for the web service can be 
inspected with a browser at  
http://localhost:8080/calculator?wsdl
– Thanks to an internal lightweight web server

http://localhost:8080/calculator?wsdl


Web services in Java: deploy

● The Java compiler will recognize the special 
annotations, and generate
– A WSDL file describing the web service
– A .class file containing the compiled bytecode for 

Calculator
– Various stubs for additional “hidden” classes

● The interface for the web service can be 
inspected with a browser at  
http://localhost:8080/calculator?wsdl
– Thanks to an internal lightweight web server

Need proper tools installed!

Some options:

Java Enterprise edition (Java EE)
Java Web Services Developement Pack  (JWSDK)

GlassFish
Apache Geronimo

JBoss

or any equivalent web app server

http://localhost:8080/calculator?wsdl


Web services in Java: client

● Client-side tool can generate the stubs
– wsimport -p client http://localhost:8080/calculator?wsdl
– Will generate a number of classes

● Of interest: Calculator and CalculatorService

package client;
class CalculatorApp {

public static void main(String args[]){
CalculatorService serv = new CalculatorService();
Calculator calc = serv.getCalculatorPort();

   int result = calc.add(10, 20);
   System.out.println("Sum of 10+20 = "+result);
}

}

● Client code can simply invoke generate classes

http://localhost:8080/calculator?wsdl
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