
8
● Network programming

– Addressing
– Using raw sockets

● TCP
● UDP
● Multicast

– Using RPC via RMI
– Using web services

Addressing

● In distributed systems, efficiently addressing
the right host is critical

● Many request brokers perform some form of
lookup procedure
– e.g., DNS lookup, RMI registry, CORBA naming

service, Universal Plug&Play (UpnP)
– “hidden” costs!

● In most cases:
– IP addresses (independent from the media)
– Media-specific addresses (e.g., Bluetooth)

IP Addressing

● Traditional IP (v4) addressing
– 32 bits, 4 groups of 8 bit each
– Notation: decimal-dotted, 131.114.6.36

● Extended IPv6 addressing
– 128 bits, 8 groups of 16 bit each
– Notation: hex-:, 2000:fdb8::1:00ab:853c:39a1

● “0”s can be omitted or skipped

● Private networks
– Addresses can be assigned at will, as long as

externally visible addresses are registered

IP Addressing

● Each host can have multiple interfaces
– Most often, 1 interface = 1 network card or chip

● Each interface has one IP address
– Configurable

● Each interface has one physical address
– Usually not configurable – MAC address
– Typical, but not strictly needed

● Each IP address can be referenced by multiple domain
names
– Configurable
– A domain name can resolve into multiple IPs

IP addressing

● A particular process running on a given host
is identified by a port number
– port numbers are 16-bit unsigned integers
– 0-1023 reserved for OS use
– 1024-65535 available for user applications
– It is the process' responsibility to bind to a

particular port number
– Port numbers can be agreed-upon (e.g., 80 for

HTTP) or negotiated or communicated across
servers

Direct addressing in a PN

● A system could use a directly-encoded
address space

● Examples
– Grid topology

● 64 hosts, organized in a 8x8 square grid
● Host at coordinates x,y in the grid has address

192.168.0.(x<<3 | y)

– Ring topology
● 20 hosts, organized in a ring
● Host x has neighbours (x-1)%20 and (x+1)%20
● Each host is at IP address 192.168.1.x

Direct addressing in a PN

● However, direct addressing suffers severe
limitations
– It is strictly linked to a fixed topology

● Low scalability, low flexibility
● Harder to maintain – need exactly that particular

addresses assigned to work

– It is global in nature
● No dynamic discovery

– It only works in local networks
● Hard to distribute geographically

Domain name system

● A distributed application could use DNS
names to refer to other hosts

● In favour
– Easily extensible, dynamic

● Against
– Lookup costs

● Reduced by caching: the “working set” of a single host
is typically small

– Administration costs
● Need to run your own DNS server

IP addressing in Java

● The class InetAddress represents network
addresses

● InetAddress has static methods to
– Map names to addresses
– Map addresses to names
– Discover your own address
– Check various properties of addresses
– Compare addresses for equality

InetAddress

● public static InetAddress[]
getAllByName(String hostname)
throws UnknownHostException

● public static InetAddress
getLocalHost()
throws UnknownHostException

● public String getHostName()
● public byte[] getAddress()
● public String getHostAddress()

InetAddress

● InetAddress uses an embedded cache to
avoid unnecessary DNS lookups

● For “a.b.c.d” numeric addresses, no lookup is
performed

● For “f.q.n” names, both positive lookups and
negative lookups are cached
– Positive lookups are cached forever
– Negative lookups are cached for 10 seconds

● Configurable through properties
networkaddress.cache.ttl and
networkaddress.cache.negative.ttl

InetAddress - example

private static String lookup(String host) {
InetAddress node;
try {

node = InetAddress.getByName(host);
System.out.println(node);
if (isHostName(host)) // checks [0-9.]+

 return node.getHostAddress();
else

return node.getHostName();
} catch (UnknownHostException e)

return "non ho trovato l’host";
}

Sockets

● A socket is the data structure used to manage
the state of a network connection in the IP

● The operating system provides calls to create,
use, destroy sockets

● These are typically mirrored in a language-
specific library

● In Java:
– class Socket
– class ServerSocket
– class DatagramSocket

TCP: Creating Sockets

● Class java.net.Socket
– Represents a (client) Socket

● Constructors: create and connect a socket
– public Socket(InetAddress host, int
port) throws IOException

– public Socket(String host, int port)
throws UnknownHostException,
IOException

– public Socket(String host, int port,
InetAddress locaIAddress, int
localPort) throws ...

TCP: Reading/writing from/to
Sockets

● Each (client) Socket is associated to two
streams, one for input, one for output

● public InputStream getInputStream()
throws IOException

● public OutputStream getOutputStream()
throws IOException

● You can read from and write to those streams
through normal Java I/O methods

● Beware of buffering!

TCP: read/write example

private Socket sock;
private OutputStream os;
private InputStream is;

public TestClient(String host, int port)
throws IOException {

sock=new Socket(host,port);
os=sock.getOutputStream();
is=sock.getInputStream();

}
…

● Setting up the connection to a server

TCP: read/write example

private void sendC(byte c) throws IOException {
byte[] buf= new byte[1];
buf[0]=c;
os.write(buf);

}

private byte recvC() throws IOException {
byte[] cmd=new byte[1];
int r=is.read(cmd);
if (r==-1) throw new IOException("…");
return cmd[0];

}

● Send/recv messages (1 byte here)

TCP: Closing

● A few notable methods
– sock.close()

● Ensures the socket is closed, partially-filled buffers sent out,
resources freed and re-usable

– sock.shutdownInput()
sock.shutdownOutput()

● Asymmetrical close – no further input/output possible

– flush(), close() on input and output stream
● Usual semantics

– sock.setSoKeepAlive(true)
● Sets the SO_KEEPALIVE flag on the socket
● Automatic periodic “ping”; if no answer, socket is reset

TCP: Closing

● Socket behaviour on close
– Sock.setSoLinger(boolean linger, int time)
– linger=false (default)

● send buffer is sent out; recv buffer is discarded
● close() is asynchronous; errors in sending are not reported

– linger=true, time=0
● Both send and recv buffer are discarded
● close() is asynchronous

– linger=true, time>0
● Send buffer is sent out; recv buffer is discarded
● Close() is synchronous; the call blocks until the data have been

received, or timeout time has expired

TCP: Controlling the buffering

● Sock.getReceiveBufferSize(),
sock.getSendBufferSize()

● Sock.setReceiveBufferSize(),
sock.setSendBufferSize()

● Sock.setTcpNoDelay(boolean enabled)
– enabled=true → enables Neagle's algorithm

(coalescing)
– enabled=false → disables Neagle's algorithm

(transmit immediately)

TCP: Creating server sockets

● Class java.net.ServerSocket
– Represents a server socket

● Constructor
– public ServerSocket(int port) throws
BindException, IOException

● Creates and binds a server socket that is listening
(waiting for connections) on the given port

● Several variants exist for fine-tuning of various
parameters

● As soon as the server socket is created,
clients can start connecting to the server

TCP: Handling incoming clients

● The socket method accept() suspends the
calling thread until a connection request from
a client arrives

● At that point, accept() returns another
(different) socket, which can be used for
communicating with that particular client

● Typical strategies
– Create a new server thread to handle it
– Handle the client immediately, then go back to

accept()

TCP server: example

● Creates a server

● Handles a client connection (dedicated thread)

ServerSocket ssocket;

public Server(int port) throws IOException {
ssocket=new ServerSocket(port);

}

while (!done) {
try {

Socket s=ssocket.accept();
new ServiceThread(s).start();

} catch (IOException e) { … }
}

UDP: Creating a socket

● Class java.net.DatagramSocket
● Constructors

– public DatagramSocket()
throws SocketException

● Creates a datagram socket and binds it to a system-
selected unspecified free port (usually: client role)

– public DatagramSocket(int port)
throws SocketException

● Creates a datagram socket and binds it to the given
port (usually: server role)

UDP: packets

● A packet of data (i.e., a single message) is
represented by a java.net.DatagramPacket

● Double role
– Create and fill in a DP, then give to to a DS for

sending out the message inside the packet
– Create an empty DP, pass it to a DS to store a

received message inside the packet
● Can reuse packets or buffers for efficiency

– Essentially, DP = char array + length + offset
– Also includes info about partners' IPs & ports

UDP: packets

● Two important observations
– TCP is a connection-oriented protocol

● Identity of the partners is fixed once and for all upon
establishing the connection between them

– UDP is a connection-less protocol
● Each and every packet must specify its sender and its receiver

(IPs & ports)

– TCP is a stream-oriented protocol
● All traffic is a sequence of bytes, broken at arbitrary boundaries

– UDP is a packet-oriented protocol
● Each message is sent individually (no guarantees!)

UDP: packets

● Creating a packet
– DatagramPacket(byte[] buf, int offset, int
length, InetAddress address, int port)

– Creates a packet addressed to address,port and
holding the slice of the array buf starting at offset
and of length length as payload

– Variants with fewer parameters exist
– Setter methods exists to set or change individual

parameters
– Getter methods for inspecting data on an

incoming packet

UDP: sending and receiving

● DatagramSocket.send(DatagramPacket dp)
– Will send the payload of the packet to the

address/port specified in the packet
● DatagramSocket.receive(DatagramPacket dp)

– Will suspend until a packet is received
– Then, it will copy the payload (and the sender info)

into the given dp and return
● As for TCP, the programmer can specify the size

of the send and receive buffers
– Within reason - “extra” packets are discarded

UDP: example

● Sending UDP packets

InetAddress ia = InetAddress.getByName(host);

DatagramSocket ds = new DatagramSocket();

byte[] data = new byte[20];

/* fill data as needed */

DatagramPacket dp = new DatagramPacket(data,
data.length, ia, port);

ds.send(dp);

UDP: example

● Receiving UDP packets

DatagramSocket ds = new DatagramSocket(port);

byte[] buffer = new byte[200];

DatagramPacket dp = new DatagramPacket(buffer,
buffer.length);

ds.receive(dp);

byte[] data = dp.getData();

int len = dp.getLength();

/* use the data as needed */

Encoding of messages

● All the TCP and UDP messaging is done as
sequences of bytes (chars)

● Various standard methods can be used to encode
arbitrary messages as sequences of bytes
– Using ASCII strings
– Using a ByteArrayInputStream / OutputStream +

● Using DataInputStream / OutputStream (per-item)
● Using ObjectInputStream / OutputStream (serialization)

– Composing messages “by hand”
● Possibly using bitwise operators

Multicast

● Multicast = one-to-many
– A packet sent by an host is received at the same

time by multiple other hosts on the same net
– Joining a multicast group is voluntary

● Broadcast = one-to-all
– A packet sent by an host is received at the same

time by all other hosts on the same net
– Often used for zero-conf services

● No one-to-one connection possible
– Hence, all based on UDP

Multicast: group address

● All IP addresses in the range 224.0.0.0 –
239.255.255.255 are reserved for multicast
groups

● Two reserved addresses
– 224.0.0.1 = all hosts on the subnet (try ping!)
– 224.0.0.2 = all routers on the subnet (usually

disabled by network administrators)
● Other addresses may be reserved at IANA

– e.g., 224.0.1.1 = NTP network time service

Multicast theory of operation

● An host can join one or more multicast group
● All datagram packets sent to a multicast

group address is delivered to all hosts that
have joined the group

● An host can leave a group at any time
● The port a packet is sent towards is not

significant anymore
– But the receiver can still retrieve it from the packet
– Might be used to “tag” different types of traffic

MulticastSocket: example

InetAddress group = InetAddress.getByName(gr);
if (!group.isMulticastAddress()){

throw new IllegalArgumentException();
}
MulticastSocket ms = new MulticastSocket(port);
ms.joinGroup(group);
DatagramPacket dp = new DatagramPacket(new byte[K],K);
ms.receive(dp);
byte[] data=dp.getData();
int len = dp.getLength();
/* process data */
ms.leaveGroup(group);

● A multicast receiver

Subclass of
DatagramSocket

MulticastSocket: example

InetAddress group = InetAddress.getByName(gr);
if (!group.isMulticastAddress()){

throw new IllegalArgumentException();
}
MulticastSocket ms = new MulticastSocket();
/* prepare data in d */
DatagramPacket dp = new DatagramPacket(d,d.length);
ms.setTimeToLeave(1);
ms.send(dp);

● A multicast sender

Maximum number of hops
1 = cannot leave local netword

RMI: Remote Method Invocation

● RMI is an infrastructure for causing the
execution of methods of objects that reside on
a different host

● The caller invokes the operation “as if” it was
calling a method

● The callee receives the invocation “as if” it
was simply called

● Under the hood, complex marshalling and
object serialization is used to provide
transparency

RMI overview

● RMI servers export
services through a
registry

● RMI clients can
query the registry to
discover services

● Once bound, clients
can invoke methods
of the server objects

RMI overview

● Calls are routed through a Stub (client side)
and a Skeleton (server side)

● Remote References managed by a RRL

Method
invocation

Message
passing

User code
Method

invocation

RMI: server-side API

● The server object must implement
java.rmi.Remote
– Just a marker interface

● All server methods must declare that they
might throw java.rmi.RemoteException

● The server object must
– extend UnicastRemoteObject or
– call UnicastRemoteObject.exportObject(srvrObj);

● The stub class can be created by running the
RMI-Compiler rmic

RMI: server-side API

● To ensure that the server object is available
from a registry
– A registry server must be running on the host

● On Linux: rmiregistry &
● On Windows: start rmiregistry

– A symbolic name must be bound to the server
object

● void Naming.bind(String name, Remote obj)
● void Naming.rebind(String name, Remote obj)

RMI Server example

import java.rmi.*;
public interface EchoInt extends Remote {

String getEcho(String echo) throws RemoteException;
}

● The server object interface

public class Server implements EchoInt {
public Server() { ; }
public String getEcho(String echo) {

return echo ;
}

}

● The server object implementation

The implementation can have private
and public methods at will, but only

those declared in the Remote
interface can be accessed remotely

RMI Server example

● Registration of the remote object
import java.rmi.registry.*
import java.rmi.server.*;

public class ServerActivate {
public static void main(String args[]) {

try {
Server obj = new Server();
EchoInt stub =

(EchoInt)UnicastRemoteObject.exportObject(obj);
Registry registry = LocateRegistry.getRegistry();
registry.bind("Echo", stub);

 } catch (Exception e) { … }
}

}

RMI Server example

RMI: client-side API

● The client locates a registry
– Often – but not necessarily – the registry is located on

the server host
● The client obtains a reference to the remote object

from the registry
– The client must have the interface .class!

● Calls to the methods of the obtained object will
beahave “as if” the object was local
– Tons of caveats apply

● In particular: arguments, results, exceptions are serialized!
● Remote call can fail due to network problems

RMI Client example

● Invoking remote methods
try {

Registry registry = LocateRegistry.getRegistry(host);
EchoInt stub = (EchoInt) registry.lookup("Echo");
String response = stub.getEcho(next);
System.out.println("response: " + response);

} catch (Exception e) { … }

● Notice how the client “knows” the remote
interface, but not the implementation

● On the server, each client is a different
thread executing the method code
– Synchronization might be necessary

Web Services

● Similar to other object distribution
infrastructure
– e.g., RMI or Corba

● Remote operations are invoked through
SOAP messages on top of HTTP
– SOAP: an XML-based object serialization protocol
– Services are “hosted” by a web server

● Rich semantics and types
– Services are self-described, no need to have IDL

● Slow – useful for heavy-weigth transactions

Web services in Java: server

● Modern tools use Java annotations
package server;
import javax.jws.WebService;
import javax.jws.WebService;
import javax.xml.ws.Endpoint;

@WebService public class Calculator {

@WebMethod public int add(int a, int b) { return a+b; }

public static void main(String[] args){
Calculator calc = new Calculator();
Endpoint endpoint =
Endpoint.publish("http://localhost:8080/calc", calc);

}
}

Web services in Java: deploy

● The Java compiler will recognize the special
annotations, and generate
– A WSDL file describing the web service
– A .class file containing the compiled bytecode for

Calculator
– Various stubs for additional “hidden” classes

● The interface for the web service can be
inspected with a browser at
http://localhost:8080/calculator?wsdl
– Thanks to an internal lightweight web server

http://localhost:8080/calculator?wsdl

Web services in Java: deploy

● The Java compiler will recognize the special
annotations, and generate
– A WSDL file describing the web service
– A .class file containing the compiled bytecode for

Calculator
– Various stubs for additional “hidden” classes

● The interface for the web service can be
inspected with a browser at
http://localhost:8080/calculator?wsdl
– Thanks to an internal lightweight web server

Need proper tools installed!

Some options:

Java Enterprise edition (Java EE)
Java Web Services Developement Pack (JWSDK)

GlassFish
Apache Geronimo

JBoss

or any equivalent web app server

http://localhost:8080/calculator?wsdl

Web services in Java: client

● Client-side tool can generate the stubs
– wsimport -p client http://localhost:8080/calculator?wsdl
– Will generate a number of classes

● Of interest: Calculator and CalculatorService

package client;
class CalculatorApp {

public static void main(String args[]){
CalculatorService serv = new CalculatorService();
Calculator calc = serv.getCalculatorPort();

 int result = calc.add(10, 20);
 System.out.println("Sum of 10+20 = "+result);
}

}

● Client code can simply invoke generate classes

http://localhost:8080/calculator?wsdl

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37
	Pagina 38
	Pagina 39
	Pagina 40
	Pagina 41
	Pagina 42
	Pagina 43
	Pagina 44
	Pagina 45
	Pagina 46
	Pagina 47
	Pagina 48
	Pagina 49
	Pagina 50
	Pagina 51

