
6
● Distributed Systems

– Definition
– Examples

● Distributed Applications
– Definition
– Motivations
– Frameworks

Distributed Systems

● A system including
– Multiple (often >>2) computation agents

● Each computation agent has
– Computating power (CPU)
– Local working memory (RAM)
– Local permanent memory (storage), optional

– An interconnection structure connecting those
● Not necessarily a complete graph!

– Routing more typical
● Not necessarily able to transmit arbitrary data!

– Although normally a general-purpose network technology is
used, so arbitrary messages possible

Distributed Systems

Distributed Systems

● We can abstract it to:

Computation
+

Memory

Computation
+

Memory

Message
passing

Distributed Systems

● Definition (W. Emmerich)
– A distributed system consists of a collection of

autonomous computers, connected through a
network and distribution middleware, which enables
computers to coordinate their activities and to share
the resources of the system, so that users perceive
the system as a single, integrated computing facility.

● Too strict for our purposes
● No need for a middleware
● No need for resource sharing
● No need to trick the user's perception

Distributed vs. Centralized

● Centralized system
– Single component
– Parts not autonomous
– Resources available

locally
– Monolithic software

architecture
– Single point of control
– Single point of failure

● Distributed system
– Multiple components
– Independent parts
– Resources may not be

available
– Necessarily modular

architecture
– Multiple PoC
– Multiple PoF

Distributed vs. Concurrent

● Concurrent means that multiple things
happen at once
– e.g., single computer with multi-tasking OS

● Distributed systems are concurrent systems
– By virtue of having multiple computation agents

● Concurrent systems are not necessarily
distributed
– It might well be that there is no connecting

infrastructure

Distributed vs. Parallel

● Parallel means that we have multiple
computing units, but a single (shared)
memory

● Parallel systems may be configured to work
as distributed systems
– By using message-passing paradigm, etc. MPI

● Parallel systems are not necessarilty
distributed systems per se

● Proper distributed systems are rarely
parallel systems

Distributed vs. Parallel

● Distributed ● Parallel

Source: Wikipedia

Distributed vs. Remote

● Distributed systems
are often (but not
necessarily) spread
over several
locations

● But each node has
– Computation

capabilities
– Memory

● Remote systems
always have
components spread
over several
locations

● But nodes can have
– No computation

capabilities
– No Memory

Distributed vs. Remote

● Examples of Remote-but-not-distributed
– An old-style mainframe connected via serial lines

to “dumb” terminals (teletypes)
– A control system whose electromechanical

sensors and actuators are far away, connected
through electrical wires, pressure tubes, etc.

C1: OpenGate, CloseGate
C2: SensorReading
C3: WaterLevel
E4: GoAuto, GoManual, CmdOpen, CmdClose

C1: OpenGate, CloseGate
C2: SensorReading
C3: WaterLevel
E4: GoAuto, GoManual, CmdOpen, CmdClose

Dam Ctrl
Machine

Operator

Manage gates

CM!C1

C3CD!C2
C

Dam

B

E4OP!E4

Why distributed systems?

● They occur naturally
– Any computer

network is potentially
a distributed system

● They are
economically
sensible
– Distribute load

among many cheap
components

● They are more
robust
– Well-designed

distributed systems
are resilient to
failures

● The problem at hand
can be distributed
– e.g., monitoring of

water temperature
across the oceans

A Word of Warning

● “Distributed” does not imply “Networking”
● Often, each node in a distributed system is a full

computer
– At times, a general-purpose computer fitted with a

specific program
– At times, a custom-built hardware or a device that can

communicate through the network
● But it is not necessary, example:

– In SmallTalk there are no programs, just systems
– Each object has a private state, communicates via

message passing (not method calls!) with other objects

Designing distributed systems

● Designing a distributed system is a matter of
– Plan

● Identifying the (expected) system functions

– Strategy
● Partitioning the functions among components

– Tactics
● Ensuring that components behave and communicate as

expected

– Evaluation
● Verify that the full system delivers what is expected
● Verify that the expected levels of performance, robustness,

maintainability etc. are obtained

Designing distributed systems

● Designing a distributed system is a matter of
– Plan

● Identifying the (expected) system functions

– Strategy
● Partitioning the functions among components

– Tactics
● Ensuring that components behave and communicate as

expected

– Evaluation
● Verify that the full system delivers what is expected
● Verify that the expected levels of performance, robustness,

maintainability etc. are obtained

Requirements

Design
Performance modeling

Development
APIs

Protocols
Testing

V&V (more testing)
Addressing frames concerns

Performance measuring

Designing distributed systems

● Designing a distributed system is a matter of
– Plan

● Identifying the (expected) system functions

– Strategy
● Partitioning the functions among components

– Tactics
● Ensuring that components behave and communicate as

expected

– Evaluation
● Verify that the full system delivers what is expected
● Verify that the expected levels of performance, robustness,

maintainability etc. are obtained

Requirements

Design
Performance modeling

Development
APIs

Protocols
Testing

V&V (more testing)
Addressing frames concerns

Performance measuring

Design
Performance modeling

Problem frames
(problem patterns)

Architectural patterns
Design patterns

Network programming

Architecture

● The architecture of a distributed system is a
description of
– Which components make up the system

● Identity: how are components named/identified?
● Functions: which services does a component offer?
● Properties: features and values

– Which connectors are available between them
● Identity: how are connectors named/identified?
● Properties: features and values

Components

● Typically, a full programmable computer,
customized with some specific software
– Same concept as that of machine in the Problem

Frames approach
– Hint: Use PF to analyze the problem that each

single component is supposed to solve!
● At times, specialized hardware

– In all cases: independent computation and
communication capabilities

Connectors

● Typically, some kind of networking
infrastructure, provided with
– Media layer standards: electrical, radio, optic, …
– Communication protocols: TCP/IP, web services,

CORBA, SMS, Bluetooth, USB, …
● Could be something less typical

– Example: in object-oriented programming, objects
are components, and method invocations are
connectors

● Call semantics provides connector specification

Example

Web client

HTTP
over
TCP

Firewall
dispatcher

Primary
server

Backup
server

rsync
over
ssh

JDBC

JDBC

Auth serverLDAP

HTTP
over
TCP

SMS
over
GSM

Admin
smartphone

Filestore

Filestore

Architecture

● We can talk about a concrete architecture
– e.g.: the particular way a number of machines are

set up and connected here at Polo Fibonacci to
provide: shared homes, authentication service,
print server, etc.

● We can talk about a class of architectures
– e.g.: an installation with a router, file server, print

server, email exchange (all running copies of the
same software) replicated at several sites

● We can talk about an architectural style
– Ignoring specific details and adjustments

A few common architectures

● Monolythic
– A single machine, with some device

● Device: no computation power or no local memory

● Not a distributed architecture
● Increasingly rare

– And anyhow, not in the scope of interest

Booooring...

A few common architectures

● Client / server
– A generic term for any architecture where

● Components are divided into one server and one or
more client

● The server is typically more powerful (faster, more
memory, more storage, priviledged data, etc.) than the
clients

● The server offers services to the clients
● Interactions are initiated by clients
● The connectors form a star around the server

– Found literally everywhere!

Example

● Web architecture (single-server)

Client

Client

Client

Client
Client

Client

Client

Client

Web
server

A less obvious example

● X-Windows architecture

X server

Appl

Terminal
Server

Telnet

X11 Protocol

A few common architectures

● Two-tier architecture
● Is essentially a client-server architecture,

where
– The server holds the data (storage)
– The client performs the computation

Two-tier architectures

● Advantages
– Easy to implement for simple applications
– Distributes computational load

● Disadvantages
– Scalability may be an issue
– Hard to update all clients when the computation

changes
– Clients must know the exact structure of the data
– Might create heavy load on network with many

clients and lots of data travelling around

A few common architectures

● Three-tier architecture
– Three separate functions

● User interface
● Application logic (computation)
● Storage (data)

Three-tier architecture

● Advantages
– Easy to update application logic and data

structure
– Limited data transfer load
– More scalable than two-tier

● Disadvantages
– Mildly more complex
– User interaction is limited by presentation layer
– Computational load on server can be severe

Example

● Web applications are often three-tier
architectures

● The presentation component is a web
browser running on a client machine
– e.g.: Google Chrome + Javascript

● The application server hosts the application
– e.g.: Apache Tomcat + Java + Servlet/EJB

● The storage component hosts a DBMS
– e.g.: MySQL + a RAID or NAS

A few common architectures

● Peer to peer (P2P) architecture
● Each component is a the same time a client

and a server (a peer)
● Each node offers and consumes the same

services
● There can be several layers of peers

– Nodes, super-nodes, hyper-mega-ultra-super-...
– Hosting files, hosting indexes, hosting catalogues

of nodes hosing indexes, etc.

Example

● Most file-sharing software is based on P2P
– eMule, Kazaa, BitTorrent, etc.

● But also less visible P2P
– Skype is based on a dynamically reconfigured,

multi-layer P2P architecture
– Ordinary nodes run the Skype application
– Supernodes run the Skype application, are not

firewalled, have good computational power and
network connection

– Login server (centralized) authenticates users

Example

● P2P = organized chaos

Example

● Layered P2P = well organized chaos

A few common architectures

● Pipe & Filter architecture
– Components perform different functions, but have

common interfaces
– Components that produce data: sources / wells
– Components that process data: filters
– Components that consume data: sinks

sink filter filter filter src

A few common architectures

● Straight pipe & sink are not common
– Too many machines for single task
– Can be useful to distribute load for a CPU-

intensive task
– E.g.: re-encoding large video libraries

● Variations exist where inbound or outbound
trees are used

● Inbound: collecting and processing data from
multiple sources

● Outbound: distributing data to many clients

Example

● Inbound ● Outbound

sinkfilter

filter filter

src

filterfilterfilter

src src src

filter

filter filter

filterfilter sinksink

Example

● Inbound
– Collecting processed

data from a number
of sensors distributed
geographically

● Ocean monitoring

– Taking decisions
based on a number
of different variables

● Volcano alert
● Stock market analysis

● Outbound
– Serving processed

data to many clients
– Each client can

perform further
customized analysis

● Providing data from a
LHC experiment to
various teams

● Providing intelligence
“signals” to CIA and
FBI

src

filter

filter filter

filterfilter sinksinksinkfilter

filter filter

src

filterfilterfilter

src src

A few common architectures

● Fat tree
architecture
– Similar to a tree-

based pipe and filter
– But, connectors

closer to the root
have higher capacity
than connectors at
the nodes

● Inbound & outbound
versions as expected

sinkfilter

filter filter

src

filterfilterfilter

src src

A few common architectures

● Fat tree
architecture
– Used when the

amount of data is
large (i.e., filters are
not very selective)

– Good scalability
– Scarce re-usability

(cannot re-configure
dinamically) sinkfilter

filter filter

src

filterfilterfilter

src src

A few common architectures

● Farm architecture
– A node acts as distributor
– Any number of identical functional nodes

perform the computation
● Load sharing, resilience to faults

– A node acts as collector

distrib

f

f

f

coll
Job

Result

Pipe & Filter vs. Farm

● In tree-based P&F, each message is
replicated to all connected nodes
– Multiple processing for same data

● In Farm, each message is sent to just one of
the connected nodes
– Same processing for multiple data

src

filter

filter filter

filterfilter sinksink

distrib

f

f

f

coll
Job

Resultvs.

Combinations

● Most often, complex architectures are built out
of a combination of the previous styles
– Together with ad-hoc, application-specific

solutions
● Example: Distributing financial analyses

– An inbound P&F to get market data from all over the world
– A farm to process each piece of data
– An “inner” P2P storage layer (for robustness)
– An outbound fat tree to distribute analyses to customers
– A three-tier “outer” layer to present analyses to users

(graphics and layout)

Combinations

sinkfilter

filter filter

src

filterfilterfilter

src src

distrib

f

f

f

coll
Job

Result

src

filter

filter filter

filterfilter sinksink

collection
Customers

(class A) Customers
(class B)

“storage cloud”

processing

storage relevance

publication

Final recommendation

● The wider the repertoire of proven techniques
a designe knows, the easier to envision a
solution

● Most problem require wise combination of
known techniques

● Some problem require creativity – Imagine!
● Always keep in mind:

– Properties of components
– Properties of connectors
– Constraints & Concerns

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37
	Pagina 38
	Pagina 39
	Pagina 40
	Pagina 41
	Pagina 42
	Pagina 43
	Pagina 44
	Pagina 45

