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Distributed Systems

● A system including
– Multiple (often >>2) computation agents

● Each computation agent has
– Computating power (CPU)
– Local working memory (RAM)
– Local permanent memory (storage), optional

– An interconnection structure connecting those
● Not necessarily a complete graph!

– Routing more typical
● Not necessarily able to transmit arbitrary data!

– Although normally a general-purpose network technology is 
used, so arbitrary messages possible



Distributed Systems



Distributed Systems

● We can abstract it to:
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Distributed Systems

● Definition (W. Emmerich)
– A distributed system  consists of a collection of 

autonomous computers, connected through a 
network and distribution middleware, which enables 
computers to coordinate their activities and to share 
the resources of the system, so that users perceive 
the system as a single, integrated computing facility.

● Too strict for our purposes
● No need for a middleware
● No need for resource sharing
● No need to trick the user's perception



Distributed vs. Centralized

● Centralized system
– Single component
– Parts not autonomous
– Resources available 

locally
– Monolithic software 

architecture
– Single point of control
– Single point of failure

● Distributed system
– Multiple components
– Independent parts
– Resources may not be 

available
– Necessarily modular 

architecture
– Multiple PoC
– Multiple PoF 



Distributed vs. Concurrent

● Concurrent means that multiple things 
happen at once
– e.g., single computer with multi-tasking OS

● Distributed systems are concurrent systems
– By virtue of having multiple computation agents

● Concurrent systems are not necessarily 
distributed
– It might well be that there is no connecting 

infrastructure



Distributed vs. Parallel

● Parallel means that we have multiple 
computing units, but a single (shared) 
memory

● Parallel systems may be configured to work 
as distributed systems
– By using message-passing paradigm, etc. MPI

● Parallel systems are not necessarilty 
distributed systems per se

● Proper distributed systems are rarely 
parallel systems



Distributed vs. Parallel

● Distributed ● Parallel

Source: Wikipedia



Distributed vs. Remote

● Distributed systems 
are often (but not 
necessarily) spread 
over several 
locations

● But each node has
– Computation 

capabilities
– Memory

● Remote systems 
always have 
components spread 
over several 
locations

● But nodes can have
– No computation 

capabilities
– No Memory



Distributed vs. Remote

● Examples of Remote-but-not-distributed
– An old-style mainframe connected via serial lines 

to “dumb” terminals (teletypes)
– A control system whose electromechanical 

sensors and actuators are far away, connected 
through electrical wires, pressure tubes, etc.

C1: OpenGate, CloseGate
C2: SensorReading
C3: WaterLevel
E4: GoAuto, GoManual, CmdOpen, CmdClose

C1: OpenGate, CloseGate
C2: SensorReading
C3: WaterLevel
E4: GoAuto, GoManual, CmdOpen, CmdClose
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Why distributed systems?

● They occur naturally
– Any computer 

network is potentially 
a distributed system

● They are 
economically 
sensible
– Distribute load 

among many cheap 
components

● They are more 
robust
– Well-designed 

distributed systems 
are resilient to 
failures

● The problem at hand 
can be distributed
– e.g., monitoring of 

water temperature 
across the oceans



A Word of Warning

● “Distributed” does not imply “Networking”
● Often, each node in a distributed system is a full 

computer
– At times, a general-purpose computer fitted with a 

specific program
– At times, a custom-built hardware or a device that can 

communicate through the network
● But it is not necessary, example:

– In SmallTalk there are no programs, just systems
– Each object has a private state, communicates via 

message passing (not method calls!) with other objects



Designing distributed systems

● Designing a distributed system is a matter of
– Plan

● Identifying the (expected) system functions

– Strategy
● Partitioning the functions among components

– Tactics
● Ensuring that components behave and communicate as 

expected

– Evaluation
● Verify that the full system delivers what is expected
● Verify that the expected levels of performance, robustness, 

maintainability etc. are obtained



Designing distributed systems

● Designing a distributed system is a matter of
– Plan

● Identifying the (expected) system functions

– Strategy
● Partitioning the functions among components

– Tactics
● Ensuring that components behave and communicate as 

expected

– Evaluation
● Verify that the full system delivers what is expected
● Verify that the expected levels of performance, robustness, 

maintainability etc. are obtained

Requirements

Design
Performance modeling

Development
APIs

Protocols
Testing

V&V (more testing)
Addressing frames concerns

Performance measuring



Designing distributed systems

● Designing a distributed system is a matter of
– Plan

● Identifying the (expected) system functions

– Strategy
● Partitioning the functions among components

– Tactics
● Ensuring that components behave and communicate as 

expected

– Evaluation
● Verify that the full system delivers what is expected
● Verify that the expected levels of performance, robustness, 

maintainability etc. are obtained

Requirements

Design
Performance modeling

Development
APIs

Protocols
Testing

V&V (more testing)
Addressing frames concerns

Performance measuring

Design
Performance modeling

Problem frames
(problem patterns)

Architectural patterns
Design patterns

Network programming



Architecture

● The architecture of a distributed system is a 
description of
– Which components make up the system

● Identity: how are components named/identified?
● Functions: which services does a component offer?
● Properties: features and values

– Which connectors are available between them
● Identity: how are connectors named/identified?
● Properties: features and values



Components

● Typically, a full programmable computer, 
customized with some specific software
– Same concept as that of machine in the Problem 

Frames approach
– Hint: Use PF to analyze the problem that each 

single component is supposed to solve!
● At times, specialized hardware

– In all cases: independent computation and 
communication capabilities



Connectors

● Typically, some kind of networking 
infrastructure, provided with
– Media layer standards: electrical, radio, optic, …
– Communication protocols: TCP/IP, web services, 

CORBA, SMS, Bluetooth, USB, …
● Could be something less typical

– Example: in object-oriented programming, objects 
are components, and method invocations are 
connectors

● Call semantics provides connector specification
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Architecture

● We can talk about a concrete architecture
– e.g.: the particular way a number of machines are 

set up and connected here at Polo Fibonacci to 
provide: shared homes, authentication service, 
print server, etc.

● We can talk about a class of architectures
– e.g.: an installation with a router, file server, print 

server, email exchange (all running copies of the 
same software) replicated at several sites

● We can talk about an architectural style
– Ignoring specific details and adjustments



A few common architectures

● Monolythic
– A single machine, with some device

● Device: no computation power or no local memory

● Not a distributed architecture
● Increasingly rare

– And anyhow, not in the scope of interest

Booooring...



A few common architectures

● Client / server
– A generic term for any architecture where

● Components are divided into one server and one or 
more client

● The server is typically more powerful (faster, more 
memory, more storage, priviledged data, etc.) than the 
clients

● The server offers services to the clients
● Interactions are initiated by clients
● The connectors form a star around the server

– Found literally everywhere!



Example

● Web architecture (single-server)

Client
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A less obvious example

● X-Windows architecture

X server

Appl

Terminal
Server

Telnet

X11 Protocol



A few common architectures

● Two-tier architecture
● Is essentially a client-server architecture, 

where 
– The server holds the data (storage)
– The client performs the computation



Two-tier architectures

● Advantages
– Easy to implement for simple applications
– Distributes computational load

● Disadvantages
– Scalability may be an issue
– Hard to update all clients when the computation 

changes
– Clients must know the exact structure of the data
– Might create heavy load on network with many 

clients and lots of data travelling around



A few common architectures

● Three-tier architecture
– Three separate functions

● User interface
● Application logic (computation)
● Storage (data)



Three-tier architecture

● Advantages
– Easy to update application logic and data 

structure
– Limited data transfer load
– More scalable than two-tier

● Disadvantages
– Mildly more complex
– User interaction is limited by presentation layer
– Computational load on server can be severe



Example

● Web applications are often three-tier 
architectures

● The presentation component is a web 
browser running on a client machine
– e.g.: Google Chrome + Javascript

● The application server hosts the application
– e.g.: Apache Tomcat + Java + Servlet/EJB

● The storage component hosts a DBMS
– e.g.: MySQL + a RAID or NAS



A few common architectures

● Peer to peer (P2P) architecture
● Each component is a the same time a client 

and a server (a peer)
● Each node offers and consumes the same 

services
● There can be several layers of peers

– Nodes, super-nodes, hyper-mega-ultra-super-...
– Hosting files, hosting indexes, hosting catalogues 

of nodes hosing indexes, etc.



Example

● Most file-sharing software is based on P2P
– eMule, Kazaa, BitTorrent, etc.

● But also less visible P2P
– Skype is based on a dynamically reconfigured, 

multi-layer P2P architecture
– Ordinary nodes run the Skype application
– Supernodes run the Skype application, are not 

firewalled, have good computational power and 
network connection

– Login server (centralized) authenticates users



Example

● P2P = organized chaos



Example

● Layered P2P = well organized chaos



A few common architectures

● Pipe & Filter architecture
– Components perform different functions, but have 

common interfaces
– Components that produce data: sources / wells
– Components that process data: filters
– Components that consume data: sinks

sink filter filter filter src



A few common architectures

● Straight pipe & sink are not common
– Too many machines for single task
– Can be useful to distribute load for a CPU-

intensive task
– E.g.: re-encoding large video libraries

● Variations exist where inbound or outbound 
trees are used

● Inbound: collecting and processing data from 
multiple sources

● Outbound: distributing data to many clients



Example

● Inbound ● Outbound

sinkfilter

filter filter
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filterfilterfilter

src src src

filter

filter filter

filterfilter sinksink



Example

● Inbound
– Collecting processed 

data from a number 
of sensors distributed 
geographically

● Ocean monitoring

– Taking decisions 
based on a number 
of different variables

● Volcano alert
● Stock market analysis

● Outbound
– Serving processed 

data to many clients
– Each client can 

perform further 
customized analysis

● Providing data from a 
LHC experiment to 
various teams

● Providing intelligence 
“signals” to CIA and 
FBI

src

filter

filter filter

filterfilter sinksinksinkfilter

filter filter

src

filterfilterfilter

src src



A few common architectures

● Fat tree 
architecture
– Similar to a tree-

based pipe and filter
– But, connectors 

closer to the root 
have higher capacity 
than connectors at 
the nodes

● Inbound & outbound 
versions as expected

sinkfilter

filter filter

src

filterfilterfilter

src src



A few common architectures

● Fat tree 
architecture
– Used when the 

amount of data is 
large (i.e., filters are 
not very selective)

– Good scalability
– Scarce re-usability 

(cannot re-configure 
dinamically) sinkfilter

filter filter

src

filterfilterfilter

src src



A few common architectures

● Farm architecture
– A node acts as distributor
– Any number of identical functional nodes 

perform the computation
● Load sharing, resilience to faults

– A node acts as collector
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Result



Pipe & Filter vs. Farm

● In tree-based P&F, each message is 
replicated to all connected nodes
– Multiple processing for same data

● In Farm, each message is sent to just one of 
the connected nodes
– Same processing for multiple data

src
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distrib
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Job

Resultvs.



Combinations

● Most often, complex architectures are built out 
of a combination of the previous styles
– Together with ad-hoc, application-specific 

solutions
● Example: Distributing financial analyses

– An inbound P&F to get market data from all over the world
– A farm to process each piece of data
– An “inner” P2P storage layer (for robustness)
– An outbound fat tree to distribute analyses to customers
– A three-tier “outer” layer to present analyses to users 

(graphics and layout)



Combinations

sinkfilter

filter filter

src

filterfilterfilter

src src

distrib

f

f

f

coll
Job

Result

src

filter

filter filter

filterfilter sinksink

collection
Customers

(class A) Customers
(class B)

“storage cloud”

processing

storage relevance

publication



Final recommendation

● The wider the repertoire of proven techniques 
a designe knows, the easier to envision a 
solution

● Most problem require wise combination of 
known techniques

● Some problem require creativity – Imagine!
● Always keep in mind:

– Properties of components
– Properties of connectors
– Constraints & Concerns
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