
5 ● Other concerns
– Domain flavours
– Standard concerns
– HCI concerns
– Distribution concerns

● Final exercise

More concerns

● We have analysed, for each problem frame,
the typical correctness concern, and have
provided the proof structure for it

● But several other concerns are equally
applicable
– Some of then only apply to certain problem

frames, or specific domains, etc.
● Specific sub-types are called flavours

– We will focus on those that have HCI-related and
distribution-related facets

Domain flavours

● Static flavours
● Structurally unchanging (lexical and some causal)

● Dynamic flavours
● Small-scale behaviour, changes are on a small time scale,

have a “resting state”
● Control flavours

● Large-scale behaviour, changes are semi-permanent
● Informal flavours

● Cannot perform formal reasoning (causal and biddable)
● Conceptual flavours

● Missing even a representation, highly subjective

Concerns in static domains

● What is static in a static domain?
– Values: e.g., an alphabet (static lexical), the road

layout of a city (static causal)
– Structure: e.g., all alphabets are sequences, city

layouts are (approximately) graphs
● How static is “static”?

– Static things may vary, but at a pace lower than
that at which things happen in our problem

● e.g., latin alphabet lost Z and gained G in 3rd century B.C.; then got Y and
Z in 1st century B.C.; gained three more letters (antisigma, digamma
inversum, sonum medium) in 1st century A.D., and lost them ~60 years
later; W came in the middle ages, J and U in the Renaissance

H-concerns in static domains

● It is tempting to present an interface arranged in
analogy with the static domain layout

● Just, consider
it could change!

● Plus
– Analogic model
– Less mapping

● Minus
– Hard to configure
– Ergonomics

H-concerns in static domains

● Example
captured in a
recent trip

● Combination
of Information
Display and
Commanded
Behaviour

● Guess what
this is?

H-concerns in static domains

● Example
captured in a
recent trip

● Combination
of Information
Display and
Commanded
Behaviour

● Guess what
this is?

Mmmm...
Beer!

H-concerns in static domains

● Arranging a UI according to the
static structure is safer
(structures rarely change)

● In fact, static structures (but
not values) are found in GUI
toolkits

D-concerns in static domains

● Static distribution
– Devices cannot join or leave the distribution

infrastructure at will
– Dangerous assumption when a link could fail and

disconnect a device!
● Independent evolution

– Different parts of a distributed system are often
under the control of different entities

– They can evolve independently
● an ISP could upgrade bandwidth
● An end user could install a new browser

Concerns in dynamic flavours

● Tolerance
– What happens if some external events changes

the state of a causal domain?
● e.g., someone tries to manually force the gates open

(or close) in our dam
– Three possible responses:

● Robust: events happen, but state will not change
● Inhibiting: events are prevented from happening
● Fragile: events happen, state changes to some

undetermined one

H-concerns in dynamic flavours

● Tolerance in user interfaces
– Robust: user can issue inappropriate commands,

these are ignored
● Controlled behaviour frame

– Inhibiting: user is prevented from issuing
inappropriate commands

● Ghosting out of GUI elements
● Physical inhibition

– Fragile: system processes
command, goes astray

● Extremely dangerous!

Concerns in dynamic flavours

● Discrete approximation
– Even when the problem is in the continuos real

world, it will end up being treated through discrete
approximation by a computer

● Early or excessive approximation can cause problems
– Proper way of studying the domain might be

inherently continuos
● e.g.: temperature of the water in the dam (hence,

volume) over a regular (daily, seasonal, yearly) cycle
dT
dt

=k sin 2 t −T

H-concerns in dynamic flavours

● Discretization in presentation
– Wrong assessment
– Confusion
– Surprise when a value “jumps” to the next

discrete step
● e.g.: value is 1.999

● Discretization in time
– Stale data, reading from ages

ago and no indication of the fact
– Insufficient predictability

1

2

2,00

1,999

Value truncated

Value approximated

Value approximated

Value real

H-concerns in dynamic flavours

● Discretization in value
– A continuous input might be forced into a discrete

scale
– Lack of accuracy, frustration
– Example

● Slider, 256 positions from “Like” to “Don't like”
● Radio buttons: “Like” / “Neutral” / “Don't like”

D-concerns in dynamic flavours

● What is the “resting state” of a dynamic flavour
domain in a distributed system?
– Not changing state

● e.g., don't hear from them / no news is good news
– Changing state on a regular basis

● e.g., sending a PING every 100ms
● DSs operate at several simultanous time scales

– e.g., re-sending a missed packet
– Hence, multiple levels of dynamicity

● In a stack model, a layer may appear static on one interface
and dynamic on another

D-concerns in dynamic flavours

● Example: ISO-OSI
● The specific job of

each layer is to “hide”
the complexities of the
layer below

● Translate a very
dynamic domain into a
more quiet one

Concerns in control flavours

● Classification of states
– Event-active, state-active, pure passive, event-

reactive, state-reactive
– Passive, stoppable-active, unstoppable-active

● In a domain with unstoppable-active state, no
phenomenon can interrupt an ongoing
transition or processing
– The machine can find a domain changing with no

hope of intervention

H-concerns in control flavours

● In an information display frame on a control-
flavour domain with unstoppable-active states,
how should the situation be depicted?
– Modality in UI
– In MVC model:

● Controller disabled during unstoppable-active states
● Model and view updated in “real-time”

– How to signal transition into and out of
unstoppable states?

– Ask confirmation before causing the domain to
enter an unstoppable state?

D-concerns in control flavours

● Unstoppable behaviour a major concern!
– With pull scheme: polling can be suspended
– With push scheme: message might be left waiting
– With interrupt scheme: interrupt must be masked at

times (ensure transactions/atomic ops)
● Plus, very hard to implement properly in general

● Control behaviour of connection domains
– Retractability: can I retract a message that has been

sent out, but not executed yet?
– Feedback: will the distribution infrastructure notify the

machine of its current state?

Concerns in informal flavours

● Forced formalisation
– In trying to formalise an informal domain, one

could end up in ridicule
– 'Everybody loves my baby (1), but my baby loves

only me (2)'
● (1) ∀x. Loves(x,MyBaby)
● (2) ∀y. Loves(MyBaby,y) ↔ y = Me
● (3) from (1), Loves(MyBaby,MyBaby)
● (4) from (2) and (3), MyBaby = Me
● All kind of dubious consequences follow...

Concerns in informal flavours

● Wrong formalisation
– The Three Miles Island case (power plant gone

wild):
● Part of the problem was fitted to an information display

frame
● Requirement: IndicateValveShut ↔ ValveShut
● Specification: IndicateValveShut ↔ SolenoidOff
● The domain did not provide SolenoidOff ↔ ValveShut
● But it was formalized (wrongly) as such, so the

correctness proof was ok
● Result...

Concerns in informal flavours

● Wrong formalisation
– The Three Miles Island case (power plant gone

wild):
● Part of the problem was fitted to an information display

frame
● Requirement: IndicateValveShut ↔ ValveShut
● Specification: IndicateValveShut ↔ SolenoidOff
● The domain did not provide SolenoidOff ↔ ValveShut
● But it was formalized (wrongly) as such, so the

correctness proof was ok
● Result...

H-concerns in informal flavour

● Computers cannot handle informal input or
output

● No hope of interacting on informal
phenomena, if not by approximation
– Is approximate formalization ...

● Reliable?
● Satisfactory to the user?
● Processable?

– e.g., free form text in a “comments” field

D-concerns in informal flavour

● Our focus is on designing distributed
systems...

● But we really mean distributed computer-
based systems with that
– Hence, we will ignore informal flavours

● Except for “human” domains
● What cannot be formalized,

– Cannot be put in a TCP/IP packet
– Cannot be fed to a CPU
– Cannot be stored on a data base

Conceptual flavours

● Hard even to consider as physical domains
● Share most of the concerns and h-concerns

with the previous ones
● Stay away from conceptual domain if you can!

● We will not discuss them further
– Epistemology is Monday 14:30-16:00,

Wednesday 14:30-16:00, Friday 12:00-13:30
–

Other common concerns

● Overrun
– Machine too fast or too slow w.r.t. domain

● Initialization
– Establishing the initial state of the domain

● Reliability
– Domain behaves differently from description

● Identities
– Associating related individuals in multiple domains

● Completeness
– What am I missing?

Overrun h-concerns

● Machine too fast for humans
– Delay cycle
– Less frequent updates
– Provide clear feedback

● Machine too slow for humans
– Prominently display “busy” state
– Buffer commands / clear buffers (keyboard)
– Modality in interfaces
– Inhibit further commands

Initialization h-concerns

● How to initialize dialogue with a user upon
starting up?
– Let the user knowingly wait
– Avoid displaying unitialized data
– Provide visual clue of when data is valid

● How to initialize a controlled domain upon
starting up?
– Ask the user how he/she wants the domain

initialized
– Initialize to a default, safe state (and let the user

know)

Initialization h-concerns

● How to handle partial re-initializations?
– Blackout / poweroff
– Login, logout

● What if the controlled domain requires user
intervention for initialization?
– User is biddable: instruct on how to initialize the

domain
● e.g., setting up heavy machinery

– Refuse further interaction until domain initialized
properly

Initialization h-concerns

● What if the domain cannot be initialized?
– e.g., some needed actuator is broken
– Cannot initialize, cannot proceed: lock-up

● Enter an explicit “lock-up” state
● Let the user know what is happening
● Suggest remedial actions
● Suggest where to look / whom to call for further help

– How much detail to provide, which options to give?

Reliability h-concerns

● How to report errors?
– e.g., syntax errors in lexical domains

● How to diagnose errors in a non-obtrusive
way?
– The user does not want to have his workflow

interrupted by “stupid” consistency checks
● Are users “reliable”?

– Are you sure?
– Are you sure you

are sure?

Identities h-concerns

● How to make it clear to the user that different
interface phenomena refer to the same
individual?

● What if names/labels/IDs are not enough?
– e.g., files with the same name in different folders

Identities h-concerns

● How to make it clear to the user that different
interface phenomena refer to the same
individual?

● What if names/labels/IDs are not enough?
– e.g., files with the same name in different folders

ICU Patients
Remember our ICU Monitoring problem? We had lots of references
to patient there. How do we really establish identity?
● Name/Surname (risk homonymy)
● Bed number (risk loosing track upon moving)
● Patient number (risk re-assigning a new one in the future)
● Etc.

Identities h-concerns

● Can we always provide unique Ids?
● Even if we can, is that better for the user?

Identities h-concerns

● Are icons or other forms of graphical
representation enough to establish identity?

Completeness h-concerns

● We are confident that we have caught all relevant
domains, phenomena, etc.

● Can “holes” in the user interface suggest more
phenomena or new domains?
– e.g., maybe the GUI has a “Cancel” button whose

related event Cancel has not been considered in our
modeling?

● Can standard UI practices be used to drive
further elicitation?
– The user did not ask for configuring the colours
– Maybe we can propose it as a gizmo?

Other common D-concerns

● Overrun
– One party of a communication too fast/slow for the

other
● Initialization

– Joining a system, self-configuration, discovery
● Reliability

– Node or infrastructure fails
● Identities

– How to define Globally Unique Identifiers
– How to define proper scoper for non-GUID

Final exercise - 1

● Go back to the ICU
patient monitoring
problem

● Identify its sub-problems
● Fit them to problem frames
● Consider the concerns of

each frame
● Prepare a specification

for the Monitor machine
● Put forward a tenable correctness argument for your specification
● Which implementation technology (hardware, OS, language)

would you use for such a project?

Monitor
machine

ICU
patients

Analog
devices

Factors
database

Nurses'
station

Medical
staff

Periods &
ranges a

b

c

d

e
f

a: Name, Factor, Period, Range
b: EnterN, EnterF, EnterP, EnterR
c: Notify
d: StoreFactor
e: RegisterValue
f: FactorEvidence

Final exercise - 2

● Consider the h-concerns
of each frame

● Also consider the generic
h-concerns

● How would you realize a
user interface for the
Monitor Machine?

● List the things in the UI
that make you feel uneasy

● Sketch out use cases for the Monitor Machine, and prepare a
storyboard of what the user interface would look like

● List 10 ways in which user behaviour can lead to utter failure
regardless of your best efforts

Monitor
machine

ICU
patients

Analog
devices

Factors
database

Nurses'
station

Medical
staff

Periods &
ranges a

b

c

d

e
f

a: Name, Factor, Period, Range
b: EnterN, EnterF, EnterP, EnterR
c: Notify
d: StoreFactor
e: RegisterValue
f: FactorEvidence

