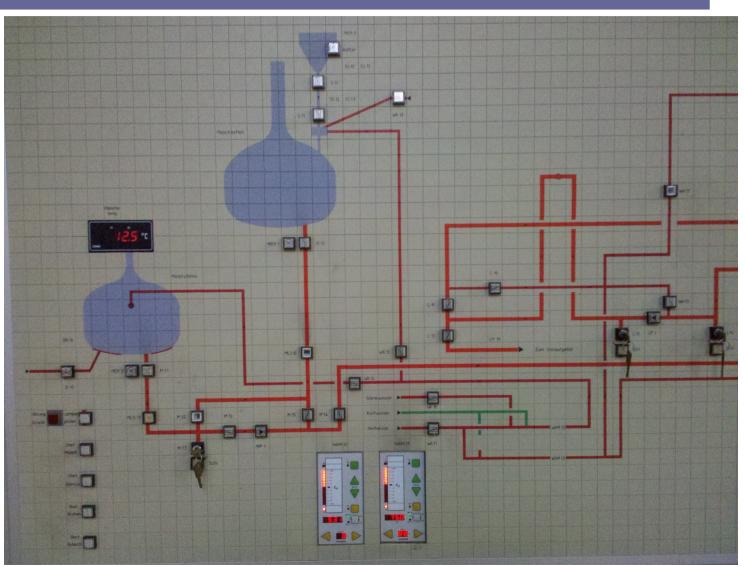


- Other concerns
 - Domain flavours
 - Standard concerns
 - -HCI concerns
 - Distribution concerns
- Final exercise

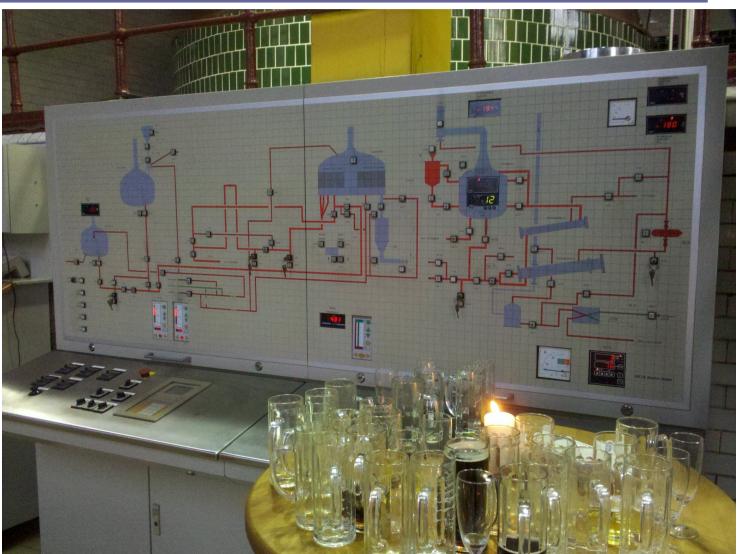
More concerns

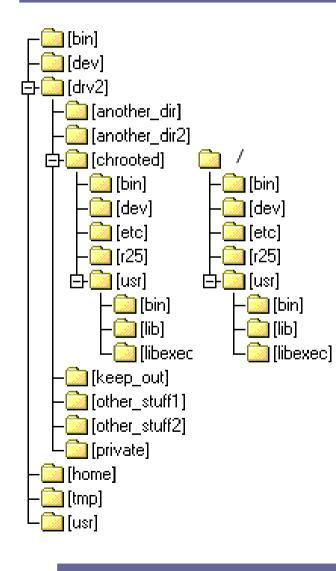
- We have analysed, for each problem frame, the typical *correctness* concern, and have provided the **proof structure** for it
- But several other concerns are equally applicable
 - Some of then only apply to certain problem frames, or specific domains, etc.
 - Specific sub-types are called **flavours**
 - We will focus on those that have HCI-related and distribution-related facets

Domain flavours

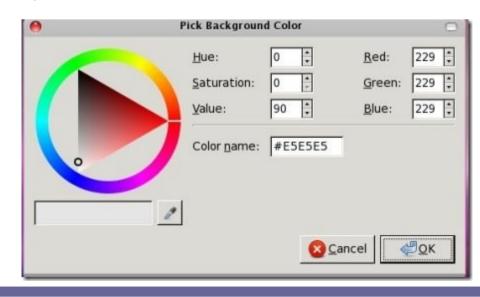

- Static flavours
 - Structurally unchanging (lexical and some causal)
- Dynamic flavours
 - Small-scale behaviour, changes are on a small time scale, have a "resting state"
- Control flavours
 - Large-scale behaviour, changes are semi-permanent
- Informal flavours
 - Cannot perform formal reasoning (causal and biddable)
- Conceptual flavours
 - Missing even a representation, highly subjective

- What is static in a static domain?
 - Values: e.g., an alphabet (static lexical), the road layout of a city (static causal)
 - Structure: e.g., all alphabets are sequences, city layouts are (approximately) graphs
- How static is "static"?
 - Static things may vary, but at a pace lower than that at which things happen in our problem
 - e.g., latin alphabet lost Z and gained G in 3rd century B.C.; then got Y and Z in 1st century B.C.; gained three more letters (*antisigma*, *digamma inversum*, *sonum medium*) in 1st century A.D., and lost them ~60 years later; W came in the middle ages, J and U in the Renaissance


- It is tempting to present an interface arranged in analogy with the static domain layout
- Just, consider it could change!
- Plus
 - Analogic model
 - Less mapping
- Minus
 - Hard to configure
 - Ergonomics

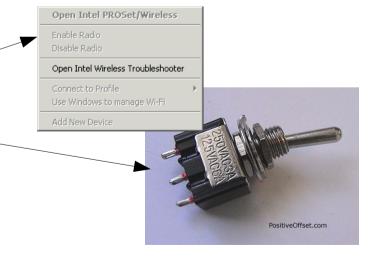

- Example captured in a recent trip
- Combination of Information Display and Commanded Behaviour
- Guess what this is?

- Example captured in a recent trip
- Combination of Information Display and Commanded Behaviour
- Guess what this is?



- Arranging a UI according to the static structure is safer (structures rarely change)
- In fact, static structures (but not values) are found in GUI

toolkits

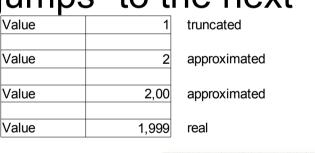

- Static distribution
 - Devices cannot join or leave the distribution infrastructure at will
 - Dangerous assumption when a link could fail and disconnect a device!
- Independent evolution
 - Different parts of a distributed system are often under the control of different entities
 - They can evolve independently
 - an ISP could upgrade bandwidth
 - An end user could install a new browser

Concerns in dynamic flavours

- Tolerance
 - What happens if some external events changes the state of a causal domain?
 - e.g., someone tries to manually force the gates open (or close) in our dam
 - Three possible responses:
 - Robust: events happen, but state will not change
 - Inhibiting: events are prevented from happening
 - Fragile: events happen, state changes to some undetermined one

H-concerns in dynamic flavours

- Tolerance in user interfaces
 - Robust: user can issue inappropriate commands, these are ignored
 - Controlled behaviour frame
 - Inhibiting: user is prevented from issuing inappropriate commands
 - Ghosting out of GUI elements
 - Physical inhibition —
 - Fragile: system processes command, goes astray
 - Extremely dangerous!


Concerns in dynamic flavours

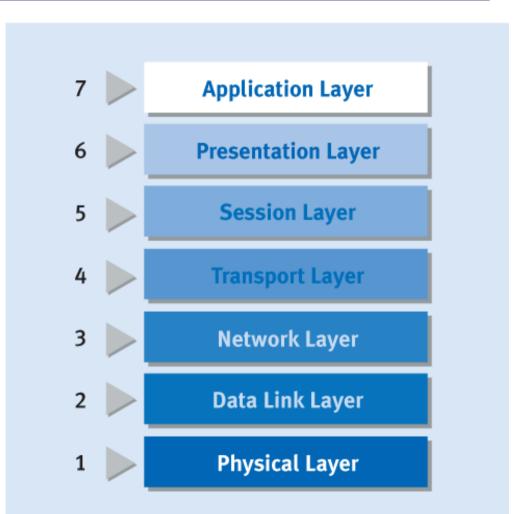
- Discrete approximation
 - Even when the problem is in the continuos real world, it will end up being treated through discrete approximation by a computer
 - Early or excessive approximation can cause problems
 - Proper way of *studying* the domain might be inherently continuos
 - e.g.: temperature of the water in the dam (hence, volume) over a regular (daily, seasonal, yearly) cycle

$$\frac{dT}{dt} = k\left(\sin\left(2\,\pi\,\omega\,t\right) - T\right)$$

H-concerns in dynamic flavours

- Discretization in presentation
 - Wrong assessment
 - Confusion
 - Surprise when a value "jumps" to the next discrete step
 - e.g.: value is 1.999 ----
- Discretization in time
 - Stale data, reading from ages ago and no indication of the fact
 - Insufficient predictability

H-concerns in dynamic flavours


- Discretization in value
 - A continuous input might be forced into a discrete scale
 - Lack of accuracy, frustration
 - Example
 - Slider, 256 positions from "Like" to "Don't like"
 - Radio buttons: "Like" / "Neutral" / "Don't like"

D-concerns in dynamic flavours

- What is the "resting state" of a dynamic flavour domain in a distributed system?
 - Not changing state
 - e.g., don't hear from them / no news is good news
 - Changing state on a regular basis
 - e.g., sending a PING every 100ms
- DSs operate at several simultanous time scales
 - e.g., re-sending a missed packet
 - Hence, multiple levels of dynamicity
 - In a stack model, a layer may appear static on one interface and dynamic on another

D-concerns in dynamic flavours

- Example: ISO-OSI
- The specific job of each layer is to "hide" the complexities of the layer below
- Translate a very dynamic domain into a more quiet one

Concerns in control flavours

- Classification of states
 - Event-active, state-active, pure passive, eventreactive, state-reactive
 - Passive, stoppable-active, unstoppable-active
- In a domain with unstoppable-active state, no phenomenon can interrupt an ongoing transition or processing
 - The machine can find a domain changing with no hope of intervention

H-concerns in control flavours

- In an information display frame on a controlflavour domain with unstoppable-active states, how should the situation be depicted?
 - Modality in UI
 - In MVC model:
 - Controller disabled during unstoppable-active states
 - Model and view updated in "real-time"
 - How to signal transition into and out of unstoppable states?
 - Ask confirmation before causing the domain to enter an unstoppable state?

D-concerns in control flavours

- Unstoppable behaviour a major concern!
 - With **pull** scheme: polling can be suspended
 - With **push** scheme: message might be left waiting
 - With interrupt scheme: interrupt must be masked at times (ensure transactions/atomic ops)
 - Plus, very hard to implement properly in general
- Control behaviour of connection domains
 - Retractability: can I retract a message that has been sent out, but not executed yet?
 - Feedback: will the distribution infrastructure notify the machine of its current state?

Concerns in informal flavours

- Forced formalisation
 - In trying to formalise an informal domain, one could end up in ridicule
 - 'Everybody loves my baby (1), but my baby loves only me (2)'
 - (1) ∀*x*. Loves(*x*,MyBaby)
 - (2) $\forall y$. Loves(MyBaby, y) \leftrightarrow y = Me
 - (3) from (1), Loves(MyBaby,MyBaby)
 - (4) from (2) and (3), MyBaby = Me
 - All kind of dubious consequences follow...

Concerns in informal flavours

- Wrong formalisation
 - The Three Miles Island case (power plant gone wild):
 - Part of the problem was fitted to an information display frame
 - Requirement: IndicateValveShut ↔ ValveShut
 - Specification: IndicateValveShut ↔ SolenoidOff
 - The domain did not provide SolenoidOff ↔ ValveShut
 - But it was formalized (wrongly) as such, so the correctness proof was ok
 - Result...

Concerns in informal flavours

- Wrong formalisation
 - The Three Miles Island wild):
 - Part of the problem was frame
 - Requirement: IndicateV
 - Specification: IndicateV
 - The domain did not pro
 - But it was formalized (w correctness proof was c
 - Result...

H-concerns in informal flavour

- Computers cannot handle *informal* input or output
- No hope of interacting on informal phenomena, if not by approximation
 - Is approximate formalization ...
 - Reliable?
 - Satisfactory to the user?
 - Processable?
 - e.g., free form text in a "comments" field

D-concerns in informal flavour

- Our focus is on designing distributed systems...
- But we really mean distributed computerbased systems with that
 - Hence, we will ignore informal flavours
 - Except for "human" domains
- What cannot be formalized,
 - Cannot be put in a TCP/IP packet
 - Cannot be fed to a CPU
 - Cannot be stored on a data base

Conceptual flavours

- Hard even to consider as physical domains
- Share most of the concerns and h-concerns with the previous ones
- Stay away from conceptual domain if you can!

- We will not discuss them further
 - Epistemology is Monday 14:30-16:00,
 Wednesday 14:30-16:00, Friday 12:00-13:30

Other common concerns

- Overrun
 - Machine too fast or too slow w.r.t. domain
- Initialization
 - Establishing the initial state of the domain
- Reliability
 - Domain behaves differently from description
- Identities
 - Associating related individuals in multiple domains
- Completeness
 - What am I missing?

Overrun h-concerns

- Machine too fast for humans
 - Delay cycle
 - Less frequent updates
 - Provide clear feedback
- Machine too slow for humans
 - Prominently display "busy" state

- Buffer commands / clear buffers (keyboard)
- Modality in interfaces
- Inhibit further commands

Initialization h-concerns

- How to initialize dialogue with a user upon starting up?
 - Let the user knowingly wait
 - Avoid displaying unitialized data
 - Provide visual clue of when data is valid
- How to initialize a controlled domain upon starting up?
 - Ask the user how he/she wants the domain initialized
 - Initialize to a default, safe state (and let the user know)

Initialization h-concerns

- How to handle partial re-initializations?
 - Blackout / poweroff
 - Login, logout
- What if the controlled domain requires user intervention for initialization?
 - User is biddable: instruct on how to initialize the domain
 - e.g., setting up heavy machinery
 - Refuse further interaction until domain initialized properly

Initialization h-concerns

- What if the domain cannot be initialized?
 - e.g., some needed actuator is broken
 - Cannot initialize, cannot proceed: lock-up
 - Enter an explicit "lock-up" state
 - Let the user know what is happening
 - Suggest remedial actions
 - Suggest where to look / whom to call for further help
 - How much detail to provide, which options to give?

winan	np.exe - Application Error
•	The instruction at "0x00c4d633" referenced memory at "0x00000000". The memory could not be "read".
	Click on OK to terminate the program
	ОК

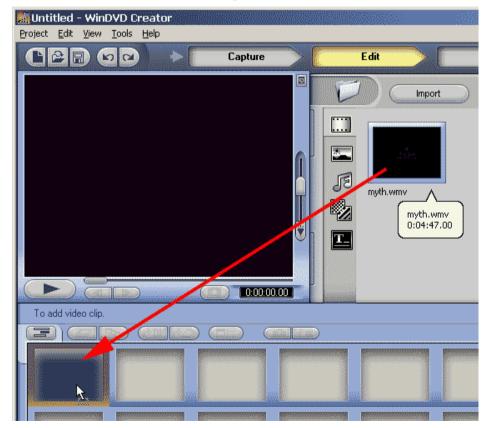
Reliability h-concerns

- How to report errors?
 - e.g., syntax errors in lexical domains
- How to diagnose errors in a non-obtrusive way?
 - The user does not want to have his workflow interrupted by "stupid" consistency checks
- Are users "reliable"?
 - Are you sure?
 - Are you sure you are sure?

- How to make it clear to the user that different interface phenomena refer to the same individual?
- What if names/labels/IDs are not enough?
 - e.g., files with the same name in different folders

- How to make it clear to the user that different interface phenomena refer to the same individual?
- What if names/labels/IDs are not enough?
 - e.g., files with the same name in different folders

ICU Patients


Remember our ICU Monitoring problem? We had lots of references to patient there. How do we really establish identity?

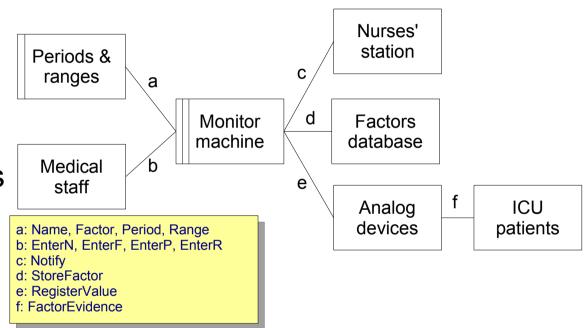
- Name/Surname (risk homonymy)
- Bed number (risk loosing track upon moving)
- Patient number (risk re-assigning a new one in the future)
- Etc.

- Can we *always* provide unique Ids?
- Even if we can, is that better for the user?

1.000	Delete Resources Confirmation
	Are you sure you want to delete the resource "D:\ADT_CCRC_Clent\yL_ADT_Docs_intg\AD5_docs\ADM_doc

• Are icons or other forms of graphical representation enough to establish identity?

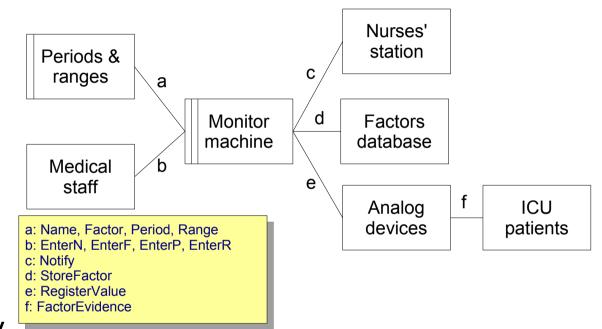
Completeness h-concerns


- We are confident that we have caught all relevant domains, phenomena, etc.
- Can "holes" in the user interface suggest more phenomena or new domains?
 - e.g., maybe the GUI has a "Cancel" button whose related event Cancel has not been considered in our modeling?
- Can standard UI practices be used to drive further elicitation?
 - The user did not ask for configuring the colours
 - Maybe we can propose it as a gizmo?

Other common D-concerns

- Overrun
 - One party of a communication too fast/slow for the other
- Initialization
 - Joining a system, self-configuration, discovery
- Reliability
 - Node or infrastructure fails
- Identities
 - How to define Globally Unique Identifiers
 - How to define proper scoper for non-GUID

Final exercise - 1


- Go back to the ICU patient monitoring problem
- Identify its sub-problems
- Fit them to problem frames
- Consider the concerns of each frame
- Prepare a specification for the Monitor machine

- Put forward a tenable correctness argument for your specification
- Which implementation technology (hardware, OS, language) would you use for such a project?

Final exercise - 2

- Consider the h-concerns of each frame
- Also consider the generic h-concerns
- How would you realize a user interface for the Monitor Machine?
- List the things in the UI that make you feel uneasy

- Sketch out use cases for the Monitor Machine, and prepare a storyboard of what the user interface would look like
- List 10 ways in which user behaviour can lead to utter failure regardless of your best efforts