
1 ● Requirements
Engineering
– definition, scope
– roles

Requirements Engineering

● Requirements Engineering deals with how to
better establish the requirements for a
software system
– what is desired by the “customers”
– what is feasible
– what is of interest to the producer

● Requirements Engineering is an
interdisciplinary issue
– technical (computer science, engineering, ...)
– social (acceptability, ethical, negotiation...)

Requirements Engineering

● The “official” definition by IEEE (1990):
Requirement. (1) A condition or capability needed by a user to
solve a problem or achieve an objective. (2) A condition or
capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other
formally imposed documents. (3) A documented representation of
a condition or capability as in (1) or (2).

Requirements Analysis. (1) The process of studying user needs
to arrive at a definition of system, hardware, or software
requirements. (2) The process of studying and refining system,
hardware, or software requirements.

● The “official” definition by IEEE (1990):

Requirements Engineering

Requirement. (1) A condition or capability needed by a user to
solve a problem or achieve an objective. (2) A condition or
capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other
formally imposed documents. (3) A documented representation of
a condition or capability as in (1) or (2).

Requirements Analysis. (1) The process of studying user needs
to arrive at a definition of system, hardware, or software
requirements. 2) The process of studying and refining system,
hardware, or software requirements.

Development problem
build a software system with given capabilities (2)
so that the problem/objective (1) is solved/reached

● The “official” definition by IEEE (1990):

Requirements Engineering

Requirement. (1) A condition or capability needed by a user to
solve a problem or achieve an objective. (2) A condition or
capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other
formally imposed documents. (3) A documented representation of
a condition or capability as in (1) or (2).

Requirements Analysis. (1) The process of studying user needs
to arrive at a definition of system, hardware, or software
requirements. 2) The process of studying and refining system,
hardware, or software requirements.

Development problem
build a software system with given capabilities (2)
so that the problem/objective (1) is solved/reached

Elicitation problem
extract and articulate requirements based on interaction with
users (later: customers, consultants, domain experts, etc., in

general stakeholders)

Requirements Engineering

● An alternative definition by Pamela Zave
(1997):

“Requirements engineering is the branch of software
engineering concerned with the real-world goals for,
functions of, and constraints on software systems. It is
also concerned with the relationship of these factors to
precise specifications of software behavior, and to their
evolution over time and across software families.”

Requirements Engineering

● An alternative definition by Pamela Zave
(1997):

“Requirements engineering is the branch of software
engineering concerned with the real-world goals for,
functions of, and constraints on software systems. It is
also concerned with the relationship of these factors to
precise specifications of software behavior, and to their
evolution over time and across software families.”

Development problem
produce a precise specification of software behaviour

(implicitly: so that the goals are reached)

Requirements Engineering

● An alternative definition by Pamela Zave
(1997):

“Requirements engineering is the branch of software
engineering concerned with the real-world goals for,
functions of, and constraints on software systems. It is
also concerned with the relationship of these factors to
precise specifications of software behavior, and to their
evolution over time and across software families.”

Development problem
produce a precise specification of software behaviour

(implicitly: so that the goals are reached)

Elicitation problem
discover the goals, functions and constraints in the real world

(by asking stakeholders or from other sources, e.g.
documents or ethnography)

Basic understanding of RE

● In theory, RE is simple:
1 Talk to users, get requirements
2 Write a precise specification of the same
3 Hand the spec to programmers, they will build the

system accordingly
4 Happy users will pay your fee

● In practice, it might be not!
– in theory, theory and practice coincide
– in practice, they do not

Major hurdles in RE

● Elicitation
– users might not be able to articulate their needs
– different users might have conflicting needs
– some stakeholder might not be identified as such
– interaction with users might produce lots of

“noise” (irrelevant facts)
– part of the needed knowledge might be tacit (hard

to make explicit)

The trouble with language

● Appeared two days ago in a public toilet in our
department:

Do not throw anything but toilet paper in the WC

Any other kind of material might clog the pipes and cause damage to the toilet.

The trouble with language

● Appeared two days ago in a public toilet in our
department:

Do not throw anything but toilet paper in the WC

Any other kind of material might clog the pipes and cause damage to the toilet.

SHALL I TAKE MY SHIT HOME WITH ME ?

Major hurdles in RE

● Specification
– what language to write the SRS in?

● natural language: easy to work with, imprecise
● formal languages: precise, difficult to work with

– how to incorporate relevant domain knowledge in
a SRS?

● Verification and Validation
– is the SRS correct? (verification)
– will it solve the problem? (validation)
– will the quality of the solution be sufficient?

Major hurdles in RE

● Specification
– what language to write the SRS in?

● natural language: easy to work with, imprecise
● formal languages: precise, difficult to work with

– how to incorporate relevant domain knowledge in
a SRS?

● Verification and Validation
– is the SRS correct? (verification)
– will it solve the problem? (validation)
– will the quality of the solution be sufficient?

Human-Computer interaction
How to properly elicit and document interaction

requirements in an SRS?
A badly-engineered interaction design might

make even a correct solution worthless in
practice.

Major hurdles in RE

● Specification
– what language to write the SRS in?

● natural language: easy to work with, imprecise
● formal languages: precise, difficult to work with

– how to incorporate relevant domain knowledge in
a SRS?

● Verification and Validation
– is the SRS correct? (verification)
– will it solve the problem? (validation)
– will the quality of the solution be sufficient?

Human-Computer interaction
How to properly elicit and document interaction

requirements in an SRS?
A badly-engineered interaction design might

make even a correct solution worthless in
practice.

Performance and satisfaction
In distributed applications, level of performance

can make or break a product.

Transmission delays, resilience to faults, multiple
appliances, cost of data transmission, execution

speed, distribution channel.

Major hurdles in RE

● The hurdles mentioned above will be (in part)
addressed in the following

● Other issues we will not touch:
– how to trace requirements from source to implementation and

back
– how to collect, structure and organize requirements for whole

families of products
– how to guarantee certain properties, for high-assurance

systems
– how to evolve requirements in response to evolving needs and

real-world
– ... and countless others

Roles in RE

● The king: user
● The treasurer: customer
● The public: others affected

● The wise: domain expert
● The artisan: requirements analyst
● The worker: developer
● The supervisor: quality control
● The conductor: project manager

Roles in RE

● The king: user
● The treasurer: customer
● The public: others affected

● The wise: domain expert
● The artisan: requirements analyst
● The worker: developer
● The supervisor: quality control
● The conductor: project manager

●Different disciplines
● HCI is concerned mostly with users
● RE is concerned mostly with customers, domain

experts & requirements anaysts
● Soft Eng considers developers, quality control, project

managers
● Sys Eng considers others affected

Roles in RE

● The king: user
● The treasurer: customer
● The public: others affected

● The wise: domain expert
● The artisan: requirements analyst
● The worker: developer
● The supervisor: quality control
● The conductor: project manager

●Different disciplines
● HCI is concerned mostly with users
● RE is concerned mostly with customers, domain

experts & requirements anaysts
● Soft Eng considers developers, quality control, project

managers
● Sys Eng considers others affected

●Complementary approaches
● Usability requirements
● “Voice of the customer”
● Participative design
● Rapid prototyping
● Usability testing
● Social approaches

Roles in RE

● “Others affected” can cover a variety of
scenarios:
– shareholders of both the customer and the

developer
– governing bodies, e.g. local councils or standard

bodies
– public at large, e.g. for environmental

consequences
– competitors in the same market
– etc.

Roles in RE - example

● An intensive care unit monitoring station
– user: nurses, doctors
– customer: hospital
– others affected: patients (& their heirs)
– domain expert: physiologists & bioengineers
– requirements analyst: company or independent

(consultant)
– developer: company or contracted (outsurced)
– quality control: company
– project manager: company

Human-centered design

Bring together the social and technical
issues involved in inventing, marketing,

deploying and operating a new technology
to the maximum benefit of all involved

parties, within given constraints

Human-centered design

Bring together the social and technical
issues involved in inventing, marketing,

deploying and operating a new technology
to the maximum benefit of all involved

parties, within given constraintsWay more than just
User Interfaces!

Human-centered design

Bring together the social and technical
issues involved in inventing, marketing,

deploying and operating a new technology
to the maximum benefit of all involved

parties, within given constraintsWay more than just
User Interfaces!

Not only a piece of technology
must be usable, it has also to
satisfy the desires of involved

humans!

Human-centered design

Bring together the social and technical
issues involved in inventing, marketing,

deploying and operating a new technology
to the maximum benefit of all involved

parties, within given constraintsWay more than just
User Interfaces!

Not only a piece of technology
must be usable, it has also to
satisfy the desires of involved

humans!

In distributed systems,
expectations are still high,
but technological hurdles

are greater

RE as the study of desires

● RE is thus about the study of desires of
humans

● in particular,
– how to elicit those desires
– how to compose conflicting desires
– how to document them
– how to build a software system so that the desires

will come true
● ... given certain constraints

Sources of constraints

● Economics
– Costs for users
– Costs for customers
– Costs for developers

● Technology
– Basic components
– Infrastructure (especially for distribution)

● Legal and social issues
– What is socially and legally acceptable

